Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Rare earth sesquioxides.

Articles de revues sur le sujet « Rare earth sesquioxides »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Rare earth sesquioxides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Petermann, K., G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters et S. A. Basun. « Rare-earth-doped sesquioxides ». Journal of Luminescence 87-89 (mai 2000) : 973–75. http://dx.doi.org/10.1016/s0022-2313(99)00497-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

ZINKEVICH, M. « Thermodynamics of rare earth sesquioxides ». Progress in Materials Science 52, no 4 (mai 2007) : 597–647. http://dx.doi.org/10.1016/j.pmatsci.2006.09.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Granier, Bernard, et Serge Heurtault. « Density of Liquid Rare-Earth Sesquioxides ». Journal of the American Ceramic Society 71, no 11 (novembre 1988) : C466—C468. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07551.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Djuraev, Davron Rakhmonovich, et Mokhigul Madiyorovna Jamilova. « Physical Properties Of Rare Earth Elements ». American Journal of Applied sciences 03, no 01 (30 janvier 2021) : 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Texte intégral
Résumé :
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rodic, D., B. Antic et M. Mitric. « The rare earth ion distribution in mixed rare earth-yttrium sesquioxides ». Journal of Magnetism and Magnetic Materials 140-144 (février 1995) : 1181–82. http://dx.doi.org/10.1016/0304-8853(94)01289-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ushakov, Sergey V., Shmuel Hayun, Weiping Gong et Alexandra Navrotsky. « Thermal Analysis of High Entropy Rare Earth Oxides ». Materials 13, no 14 (14 juillet 2020) : 3141. http://dx.doi.org/10.3390/ma13143141.

Texte intégral
Résumé :
Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Urban, Marek W., et Bahne C. Cornilsen. « Bonding anomalies in the rare earth sesquioxides ». Journal of Physics and Chemistry of Solids 48, no 5 (janvier 1987) : 475–79. http://dx.doi.org/10.1016/0022-3697(87)90108-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bernal, S., F. J. Botana, J. J. Calvino, G. Cifredo, R. García, S. Molina et J. M. Rodríguez-Izquierdo. « HREM characterization of lanthana-supported rhodium catalysts ». Proceedings, annual meeting, Electron Microscopy Society of America 48, no 4 (août 1990) : 246–47. http://dx.doi.org/10.1017/s0424820100174369.

Texte intégral
Résumé :
Metals supported on rare earth sesquioxides present a non- conventional behavior. Ordinary H2 and-or CO chemisorption techniques cannot be straightforwardly used to characterize this group of catalysts. The assessement to the data of metallic dispersions and the establishment of the occurrence and extent of metal-support interaction phenomena are determinant in order to interpret the properties of these catalysts in hydrogenation reactions. In this work HREM is proposed as a powerfull technique for the study of lanthana supported rhodium catalysts. Such catalysts would be considered as representative of a series of metals supported on rare earth sesquioxides.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fedorov, P. P., M. V. Nazarkin et R. M. Zakalyukin. « On polymorphism and morphotropism of rare earth sesquioxides ». Crystallography Reports 47, no 2 (mars 2002) : 281–86. http://dx.doi.org/10.1134/1.1466504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sahu, P. Ch, Dayana Lonappan et N. V. Chandra Shekar. « High Pressure Structural Studies on Rare-Earth Sesquioxides ». Journal of Physics : Conference Series 377 (30 juillet 2012) : 012015. http://dx.doi.org/10.1088/1742-6596/377/1/012015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zelmon, David E., Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov et Klaus Petermann. « Temperature-dependent Sellmeier equations for rare-earth sesquioxides ». Applied Optics 52, no 16 (30 mai 2013) : 3824. http://dx.doi.org/10.1364/ao.52.003824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mikami, Masayoshi, et Shinichiro Nakamura. « Electronic structure of rare-earth sesquioxides and oxysulfides ». Journal of Alloys and Compounds 408-412 (février 2006) : 687–92. http://dx.doi.org/10.1016/j.jallcom.2005.01.068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kränkel, Christian, Anastasia Uvarova, Christo Guguschev, Sascha Kalusniak, Lena Hülshoff, Hiroki Tanaka et Detlef Klimm. « Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited] ». Optical Materials Express 12, no 3 (15 février 2022) : 1074. http://dx.doi.org/10.1364/ome.450203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Polfus, Jonathan M., Truls Norby et Reidar Haugsrud. « Nitrogen defects from NH3in rare-earth sesquioxides and ZrO2 ». Dalton Trans. 40, no 1 (2011) : 132–35. http://dx.doi.org/10.1039/c0dt01068e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kimura, Shin-ichi, Fumitaka Arai et Mikihiko Ikezawa. « Optical Study on Electronic Structure of Rare-Earth Sesquioxides ». Journal of the Physical Society of Japan 69, no 10 (15 octobre 2000) : 3451–57. http://dx.doi.org/10.1143/jpsj.69.3451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Dilawar, Nita, Deepak Varandani, Shalini Mehrotra, Himanshu K. Poswal, Surinder M. Sharma et Ashis K. Bandyopadhyay. « Anomalous high pressure behaviour in nanosized rare earth sesquioxides ». Nanotechnology 19, no 11 (19 février 2008) : 115703. http://dx.doi.org/10.1088/0957-4484/19/11/115703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Norby, Truls, Oddvar Dyrlie et Per Kofstad. « Protonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides ». Journal of the American Ceramic Society 75, no 5 (mai 1992) : 1176–81. http://dx.doi.org/10.1111/j.1151-2916.1992.tb05556.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Shah, Sameera, Tobias Pietsch, Maria Annette Herz, Franziska Jach et Michael Ruck. « Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids ». Chemistry 5, no 2 (2 juin 2023) : 1378–94. http://dx.doi.org/10.3390/chemistry5020094.

Texte intégral
Résumé :
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ben Salem, M., et B. Yangui. « Domain Structures in Ferroelastic Materials : Case of Rare Earth Sesquioxides ». Key Engineering Materials 101-102 (mars 1995) : 61–94. http://dx.doi.org/10.4028/www.scientific.net/kem.101-102.61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Arai, Fumitaka, Shin-ichi Kimura et Mikihiko Ikezawa. « Resonant Photoemission Study of Electronic Structure of Rare-Earth Sesquioxides ». Journal of the Physical Society of Japan 67, no 1 (15 janvier 1998) : 225–29. http://dx.doi.org/10.1143/jpsj.67.225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dilawar, Nita, Shalini Mehrotra, D. Varandani, B. V. Kumaraswamy, S. K. Haldar et A. K. Bandyopadhyay. « A Raman spectroscopic study of C-type rare earth sesquioxides ». Materials Characterization 59, no 4 (avril 2008) : 462–67. http://dx.doi.org/10.1016/j.matchar.2007.04.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Nagao, Mahiko, Hideaki Hamano, Koji Hirata, Ryotaro Kumashiro et Yasushige Kuroda. « Hydration Process of Rare-Earth Sesquioxides Having Different Crystal Structures ». Langmuir 19, no 22 (octobre 2003) : 9201–9. http://dx.doi.org/10.1021/la020954y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tang, M., J. A. Valdez, K. E. Sickafus et P. Lu. « Order-disorder phase transformation in ion-irradiated rare earth sesquioxides ». Applied Physics Letters 90, no 15 (9 avril 2007) : 151907. http://dx.doi.org/10.1063/1.2720716.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Salem, M. Ben, B. Yangui, G. Schiffmacher et C. Boulesteix. « Twinning of the hexagonal (A) structure of rare earth sesquioxides ». physica status solidi (a) 87, no 2 (16 février 1985) : 527–36. http://dx.doi.org/10.1002/pssa.2210870214.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kriklya, A. I. « High-temperature heat capacity of sesquioxides of rare-earth metals ». Powder Metallurgy and Metal Ceramics 38, no 5-6 (mai 1999) : 274–77. http://dx.doi.org/10.1007/bf02675775.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Fellner, Madeleine, Alberto Soppelsa et Alessandro Lauria. « Heat-Induced Transformation of Luminescent, Size Tuneable, Anisotropic Eu:Lu(OH)2Cl Microparticles to Micro-Structurally Controlled Eu:Lu2O3 Microplatelets ». Crystals 11, no 8 (20 août 2021) : 992. http://dx.doi.org/10.3390/cryst11080992.

Texte intégral
Résumé :
Synthetic procedures to obtain size and shape-controlled microparticles hold great promise to achieve structural control on the microscale of macroscopic ceramic- or composite-materials. Lutetium oxide is a material relevant for scintillation due to its high density and the possibility to dope with rare earth emitter ions. However, rare earth sesquioxides are challenging to synthesise using bottom-up methods. Therefore, calcination represents an interesting approach to transform lutetium-based particles to corresponding sesquioxides. Here, the controlled solvothermal synthesis of size-tuneable europium doped Lu(OH)2Cl microplatelets and their heat-induced transformation to Eu:Lu2O3 above 800 °C are described. The particles obtained in microwave solvothermal conditions, and their thermal evolution were studied using powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical microscopy, thermogravimetric analysis (TGA), luminescence spectroscopy (PL/PLE) and infrared spectroscopy (ATR-IR). The successful transformation of Eu:Lu(OH)2Cl particles into polycrystalline Eu:Lu2O3 microparticles is reported, together with the detailed analysis of their initial and final morphology.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Irshad, K. A., N. V. Chandrashekar et S. Kalavathi. « Polymorphism in rare earth sesquioxides : dependence on pressure and cationic radii ». Acta Crystallographica Section A Foundations and Advances 73, a2 (1 décembre 2017) : C1256. http://dx.doi.org/10.1107/s2053273317083188.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lupascu, D., M. Uhrmacher et K. P. Lieb. « Electric field gradients of111Cd in monoclinic (B-phase) rare earth sesquioxides ». Journal of Physics : Condensed Matter 6, no 48 (28 novembre 1994) : 10445–56. http://dx.doi.org/10.1088/0953-8984/6/48/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kolorenč, Jindřich. « Metal-Oxygen Hybridization and Core-Level Spectra in Actinide and Rare-Earth Oxides ». MRS Advances 1, no 44 (2016) : 3007–12. http://dx.doi.org/10.1557/adv.2016.403.

Texte intégral
Résumé :
ABSTRACT We employ a combination of the density-functional theory and the dynamical mean-field theory to study the electronic structure of selected rare-earth sesquioxides and dioxides. We concentrate on the core-level photoemission spectra, in particular, we illustrate how these spectra reflect the integer or fractional filling of the 4f orbitals. We compare the results to our earlier calculations of actinide dioxides and analyze why the core-level spectra of actinide compounds display a substantially reduced sensitivity to the filling of the 5f orbitals.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tang, M., P. Lu, J. A. Valdez et K. E. Sickafus. « Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3) ». Journal of Applied Physics 99, no 6 (15 mars 2006) : 063514. http://dx.doi.org/10.1063/1.2184433.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Bezzine, K., N. Benayad, M. Djermouni, S. Kacimi et A. Zaoui. « Enhanced d0 ferromagnetism via carbon doping in rare-earth sesquioxides : DFT prediction ». Journal of Magnetism and Magnetic Materials 563 (décembre 2022) : 169910. http://dx.doi.org/10.1016/j.jmmm.2022.169910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Bernal, S., F. J. Botana, R. García et J. M. Rodríguez-Izquierdo. « Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water ». Reactivity of Solids 4, no 1-2 (octobre 1987) : 23–40. http://dx.doi.org/10.1016/0168-7336(87)80085-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Hinteregger, Ernst, Michael Enders, Almut Pitscheider, Klaus Wurst, Gunter Heymann et Hubert Huppertz. « High-pressure Syntheses and Characterization of the Rare-earth Fluoride Borates RE2(BO3)F3 (RE=Tb, Dy, Ho) ». Zeitschrift für Naturforschung B 68, no 11 (1 novembre 2013) : 1198–206. http://dx.doi.org/10.5560/znb.2013-3258.

Texte intégral
Résumé :
The new rare-earth fluoride borates RE2(BO3)F3 (RE=Tb, Dy, Ho) were synthesized under highpressure/ high-temperature conditions of 1:5 GPa=1200 °C for Tb2(BO3)F3 and 3:0 GPa=900 °C for Dy2(BO3)F3 and Ho2(BO3)F3 in a Walker-type multianvil apparatus from the corresponding rareearth sesquioxides, rare-earth fluorides, and boron oxide. The single-crystal structure determinations revealed that the new compounds are isotypic to the known rare-earth fluoride borate Gd2(BO3)F3. The new rare-earth fluoride borates crystallize in the monoclinic space group P21/c (Z = 8) with the lattice parameters a=16:296(3), b=6:197(2), c=8:338(2) Å , b =93:58(3)° for Tb2(BO3)F3, a= 16:225(3), b = 6:160(2), c = 8:307(2) Å , b = 93:64(3)° for Dy2(BO3)F3, and a = 16:189(3), b = 6:124(2), c = 8:282(2) Å , β= 93:69(3)° for Ho2(BO3)F3. The four crystallographically different rare-earth cations (CN=9) are surrounded by oxygen and fluoride anions. All boron atoms form isolated trigonal-planar [BO3]3- groups. The six crystallographically different fluoride anions are in a nearly planar coordination by three rare-earth cations.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Dilawar Sharma, Nita, Jasveer Singh, Aditi Vijay, K. Samanta, S. Dogra et A. K. Bandyopadhyay. « Pressure-Induced Structural Transition Trends in Nanocrystalline Rare-Earth Sesquioxides : A Raman Investigation ». Journal of Physical Chemistry C 120, no 21 (23 mai 2016) : 11679–89. http://dx.doi.org/10.1021/acs.jpcc.6b02104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Antic, B., A. Kremenovic, I. Draganic, Ph Colomban, D. Vasiljevic-Radovic, J. Blanusa, M. Tadic et M. Mitric. « Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides ». Applied Surface Science 255, no 17 (juin 2009) : 7601–4. http://dx.doi.org/10.1016/j.apsusc.2009.04.035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kimmel, Giora, Roni Z. Shneck, Witold Lojkowski, Ze'ev Porat, Tadeusz Chudoba, Dmitry Mogilyanski, Stanislaw Gierlotka, Vladimir Ezersky et Jacob Zabicky. « Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale ». Journal of the American Ceramic Society 102, no 7 (18 mars 2019) : 3829–35. http://dx.doi.org/10.1111/jace.16396.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Sattonnay, G., S. Bilgen, L. Thomé, C. Grygiel, I. Monnet, O. Plantevin, C. Huet, S. Miro et P. Simon. « Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation ». physica status solidi (b) 253, no 11 (1 août 2016) : 2110–14. http://dx.doi.org/10.1002/pssb.201600451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Frayret, Christine, Antoine Villesuzanne, Michel Pouchard, Fabrice Mauvy, Jean Marc Bassat et Jean Claude Grenier. « A Density Functional Study of Oxygen Mobility in Ceria-Based Materials ». Defect and Diffusion Forum 323-325 (avril 2012) : 233–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.323-325.233.

Texte intégral
Résumé :
In CeO2-based solid electrolytes, it has been shown that point defects are directly responsible for oxygen ionic conduction. The ionic conductivity is strongly affected by the anion vacancy concentration which is enhanced by doping with aliovalent cations. When rare earth sesquioxides such as La2O3, Gd2O3, Sm2O3, Y2O3 are added to CeO2, the dopant cation substitutes for the cerium ion, and oxygen vacancies are created for charge compensation. Incorporation of trivalent dopants into CeO2 at the Ce4+ sites can be depicted by the following defect reaction (expressed in Kröger-Vink notation):
Styles APA, Harvard, Vancouver, ISO, etc.
39

Guo, Bing, Ashley S. Harvey, John Neil, Ian M. Kennedy, Alexandra Navrotsky et Subhash H. Risbud. « Atmospheric Pressure Synthesis of Heavy Rare Earth Sesquioxides Nanoparticles of the Uncommon Monoclinic Phase ». Journal of the American Ceramic Society 90, no 11 (novembre 2007) : 3683–86. http://dx.doi.org/10.1111/j.1551-2916.2007.01961.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Boulesteix, C., M. Ben Salem et B. Yangui. « Domain structures and plasticity of ferroelastic materials : Case of rare earth sesquioxides and YBa2Cu3O7 ». Journal of the Less Common Metals 156, no 1-2 (décembre 1989) : 29–41. http://dx.doi.org/10.1016/0022-5088(89)90404-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Balamurugan, Sarkarainadar, Ute Ch Rodewald, Thomas Harmening, Leo van Wüllen, Daniel Mohr, Heinz Deters, Hellmut Eckert et Rainer Pöttgen. « PbO / PbF2 Flux Growth of YScO3 and LaScO3 Single Crystals – Structure and Solid-State NMR Spectroscopy ». Zeitschrift für Naturforschung B 65, no 10 (1 octobre 2010) : 1199–205. http://dx.doi.org/10.1515/znb-2010-1004.

Texte intégral
Résumé :
Well-shaped small single crystals of the orthorhombic perovskites YScO3 and LaScO3 were grown from mixtures of the corresponding sesquioxides RE2O3 in PbO/PbF2 fluxes. Both structures were refined from single-crystal diffractometer data: GdFeO3-type, Pnma, a = 570.68(7), b = 789.3(1), c = 542.44(7) pm, wR2 = 0.0363, 448 F2 values for Y0.96ScO2.94, and a = 579.68(9), b = 810.3(2), c = 568.3(1) pm, wR2 = 0.0387, 513 F2 values for La0.94ScO2.91, with 32 variables per refinement. The 4c rare-earth sites of both perovskites show small defects which are charge-compensated by defects on both oxygen sites, leading to the compositions La0.94ScO2.91 and Y0.96ScO2.94 for the investigated crystals. The rare-earth sites have been characterized by 89Y and 45Sc magic-angle spinning (MAS) NMR. The 45Sc quadrupolar interaction parameters extracted from these spectra by simulations are found to be in good agreement with those obtained from DFT calculations of the electric field gradient.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Feng, Xiao, Chunmei Jia, Jing Wang, Xiaocong Cao, Panjuan Tang et Wenbing Yuan. « Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates ». Green Chemistry 17, no 7 (2015) : 3740–45. http://dx.doi.org/10.1039/c5gc00378d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Niehle, Michael, et Achim Trampert. « Atomic interface structure of bixbyite rare-earth sesquioxides grown epitaxially on Si(1 1 1) ». Journal of Physics D : Applied Physics 45, no 29 (2 juillet 2012) : 295302. http://dx.doi.org/10.1088/0022-3727/45/29/295302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Novoselov, A., J. H. Mun, R. Simura, A. Yoshikawa et T. Fukuda. « Micro-pulling-down : A viable approach to the crystal growth of refractory rare-earth sesquioxides ». Inorganic Materials 43, no 7 (juillet 2007) : 729–34. http://dx.doi.org/10.1134/s0020168507070114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Singh, Nirpendra, Sapan Mohan Saini, Tashi Nautiyal et Sushil Auluck. « Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd) ». Journal of Applied Physics 100, no 8 (15 octobre 2006) : 083525. http://dx.doi.org/10.1063/1.2353267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

SAIKI, Atsushi, Nobuo ISHIZAWA, Nobuyasu MIZUTANI et Masanori KATO. « Structural Change of C-Rare Earth Sesquioxides Yb2O3 and Er2O3 as a Function of Temperature ». Journal of the Ceramic Association, Japan 93, no 1082 (1985) : 649–54. http://dx.doi.org/10.2109/jcersj1950.93.1082_649.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Meena, Seema Kumari, Lekhraj Meena, N. L. Heda et B. L. Ahuja. « High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3 ». Radiation Physics and Chemistry 176 (novembre 2020) : 108990. http://dx.doi.org/10.1016/j.radphyschem.2020.108990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Abrashev, M. V., N. D. Todorov et J. Geshev. « Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure : A comparative study ». Journal of Applied Physics 116, no 10 (14 septembre 2014) : 103508. http://dx.doi.org/10.1063/1.4894775.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Galenin, Evgeny, Viktoriia Galenina, Iaroslav Gerasymov, Daniil Kurtsev, Serhii Tkachenko, Pavlo Arhipov, Sofiia Sadivnycha et al. « Growth of Sesquioxide Crystals from Tungsten Crucibles by Vertical Gradient Freezing Method ». Crystals 13, no 4 (31 mars 2023) : 591. http://dx.doi.org/10.3390/cryst13040591.

Texte intégral
Résumé :
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y2O3 and Y2−xScxO3 crystals by the Vertical Gradient Freezing method from tungsten crucibles, proposing an alternative to extremely expensive rhenium and iridium crucibles. Translucent Y2O3 samples are obtained, and their luminescent and scintillation parameters are evaluated. The main issues of Y2O3 crystallization under the proposed conditions are discussed, as well as ways of enhancing the crystal quality. Finally, polymorph transitions are avoided by decreasing the average radius of the rare earth cation by Y3+/Sc3+ substitution, providing transparent Y2−xScxO3 crystals with a cubic structure.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Maslen, E. N., V. A. Streltsov et N. Ishizawa. « A synchrotron X-ray study of the electron density in C-type rare earth oxides ». Acta Crystallographica Section B Structural Science 52, no 3 (1 juin 1996) : 414–22. http://dx.doi.org/10.1107/s0108768195013371.

Texte intégral
Résumé :
Structure factors for small synthetic crystals of the C-type rare earth (RE) sesquioxides Y2O3, Dy2O3 and Ho2O3 were measured with focused λ = 0.7000 (2) Å, synchrotron X-radiation, and for Ho2O3 were re-measured with an MoKα (λ = 0.71073 Å) source. Approximate symmetry in the deformation electron density (Δρ) around a RE atom with pseudo-octahedral O coordination matches the cation geometry. Interactions between heavy metal atoms have a pronounced effect on the Δρ map. The electron-density symmetry around a second RE atom is also perturbed significantly by cation–anion interactions. The compounds magnetic properties reflect this complexity. Space group Ia{\bar 3}, cubic, Z = 16, T = 293 K: Y2O3, Mr = 225.82, a = 10.5981 (7) Å, V = 1190.4 (2) Å3, Dx = 5.040 Mg m−3, μ 0.7 = 37.01 mm−1, F(000) = 1632, R = 0.067, wR = 0.067, S = 9.0 (2) for 1098 unique reflections; Dy2O3, Mr = 373.00, a = 10.6706 (7) Å, V = 1215.0 (2) Å3, Dx = 8.156 Mg m−3, μ 0.7 = 44.84 mm−1, F(000) = 2496, R = 0.056, wR = 0.051, S = 7.5 (2) for 1113 unique reflections; Ho2O3, Mr = 377.86, a = 10.606 (2) Å, V = 1193.0 (7) Å3, Dx = 8.415 Mg m−3, μ 0.7 = 48.51 mm−1 F(000) = 2528, R = 0.072, wR = 0.045, S = 9.2 (2) for 1098 unique reflections of the synchrotron data set.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie