Littérature scientifique sur le sujet « Rational »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Rational ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Rational"

1

Cunliffe, John. "The Liberal Rationale of ‘Rational Socialism’." Political Studies 36, no. 4 (December 1988): 653–62. http://dx.doi.org/10.1111/j.1467-9248.1988.tb00254.x.

Texte intégral
Résumé :
This article draws attention to the ideas of an unduly neglected Belgian thinker, Hippolyte Colins. From the 1830s, Colins addressed many issues in the political theory of property, especially problems of interpersonal, intergenerational and inter-societal justice. His ideas are discussed in the first section. A critical examination of his arguments about justified property regimes enables contemporary disputes (notably in the work of Nozick and Steiner) to be placed in a fresh perspective, offered in the second section. This locates the difficulty of distinguishing between liberal and socialist commitments to particular property systems.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dykes, James R. "A Rational Rationale for Experimental Psychology." Contemporary Psychology: A Journal of Reviews 34, no. 10 (October 1989): 934. http://dx.doi.org/10.1037/030669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ghasrodashti, Elahe, Nidthida Lin, Ralf Wilden, Francesco Chirico, and Dawn DeTienne. "Do Rational Entrepreneurs Exit Rationally?" Academy of Management Proceedings 2021, no. 1 (August 2021): 14133. http://dx.doi.org/10.5465/ambpp.2021.14133abstract.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

McGregor, John C. "Breast reduction – rationed or rational?" British Journal of Plastic Surgery 52, no. 6 (September 1999): 511. http://dx.doi.org/10.1054/bjps.1999.3177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Duckett, S. J. "Rational care before rationed care." Internal Medicine Journal 32, no. 11 (October 16, 2002): 533–34. http://dx.doi.org/10.1046/j.1445-5994.2002.00293.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Brooks, P. "Rational care before rationed care." Internal Medicine Journal 33, no. 4 (April 2003): 210. http://dx.doi.org/10.1046/j.1445-5994.2003.00382.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

., Jyoti. "Rational Numbers." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (July 1, 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tepic, Slobodan, Kent Harrington, and Otto Lanz. "Biomechanical Rationale and Rational Planning for TPLO." Veterinary and Comparative Orthopaedics and Traumatology 31, S 02 (July 2018): A1—A25. http://dx.doi.org/10.1055/s-0038-1668234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

&NA;. "Rational use of "rationally designed drugs"." Inpharma Weekly &NA;, no. 1389 (May 2003): 2. http://dx.doi.org/10.2165/00128413-200313890-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nosratabadi, Hassan. "Rational Shortlist Method with refined rationales." Mathematical Social Sciences 127 (January 2024): 12–18. http://dx.doi.org/10.1016/j.mathsocsci.2023.10.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Rational"

1

車谷, 優樹. "Congurations of Rational Curves on Rational Elliptic Surfaces." 京都大学, 2014. http://hdl.handle.net/2433/214449.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Campbell, Peter G. "Rational agency." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28592.

Texte intégral
Résumé :
It is claimed that action discourse provides us with a criterion of adequacy for a theory of action; that with action discourse we have a family of concepts which a theory of action must accommodate. After an exegesis of Davidson's essay "Agency", it is argued that his semantics of action is incompatible with our concepts of motivation and responsibility for action and of attributions of action and agency, and must, therefore, be rejected. A theory of rational agency is presented within which are to be found accounts of intention, coming to intend, intentional action, and an alternative semantics of action which connects the action essentially to agency. The theory of rational agency is then used to illuminate the concepts of trying, compulsion, autonomy and involuntariness, mistake, accident, and the so-called active-passive distinction.<br>Arts, Faculty of<br>Philosophy, Department of<br>Graduate
Styles APA, Harvard, Vancouver, ISO, etc.
3

McBurney, Peter John. "Rational interaction." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cao, Xinyu. "Rational spamming." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107528.

Texte intégral
Résumé :
Thesis: S.M. in Management Research, Massachusetts Institute of Technology, Sloan School of Management, 2016.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 57-58).<br>Advertising on social media faces a new challenge as consumers can actively choose which advertisers to follow. Tracking company accounts, owned by 93 TV shows on the most popular tweeting website in China, provides evidence that firms advertise intensively, although doing so appears to drive followers away. An analytical model suggests that consumers with limited attention may rationally choose to unfollow a firm. This happens if consumers already know enough about the firm's quality and if the firm advertises too intensely. However, firms might still find intensive advertising the optimal strategy - if a firm is perceived as having a lesser quality offering, it wants to advertise aggressively to change consumers' beliefs about its quality; if a firm is perceived as having a higher quality offering, it also wants to advertise intensively, but in an effort to crowd-out advertising messages from its competitors.<br>by Xinyu Cao.<br>S.M. in Management Research
Styles APA, Harvard, Vancouver, ISO, etc.
5

Khodorovskiy, Tatyana. "Symplectic Rational Blow-Up and Embeddings of Rational Homology Balls." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10189.

Texte intégral
Résumé :
We define the symplectic rational blow-up operation, for a family of rational homology balls \(B_n\), which appeared in Fintushel and Stern's rational blow-down construction. We do this by exhibiting a symplectic structure on a rational homology ball \(B_n\) as a standard symplectic neighborhood of a certain 2-dimensional Lagrangian cell complex. We also study the obstructions to symplectically rationally blowing up a symplectic 4-manifold, i.e. the obstructions to symplectically embedding the rational homology balls \(B_n\) into a symplectic 4-manifold. First, we present a couple of results which illustrate the relative ease with which these rational homology balls can be smoothly embedded into a smooth 4-manifold. Second, we prove a theorem and give additional examples which suggest that in order to symplectically embed the rational homology balls \(B_n\), for high \(n\), a symplectic 4-manifold must at least have a high enough \(c^2_1\) as well.<br>Mathematics
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lazda, Christopher David. "Rational homotopy theory in arithmetic geometry : applications to rational points." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24707.

Texte intégral
Résumé :
In this thesis I study various incarnations of rational homotopy theory in the world of arithmetic geometry. In particular, I study unipotent crystalline fundamental groups in the relative setting, proving that for a smooth and proper family of geometrically connected varieties f:X->S in positive characteristic, the rigid fundamental groups of the fibres X_s glue together to give an affine group scheme in the category of overconvergent F-isocrystals on S. I then use this to define a global period map similar to the one used by Minhyong Kim to study rational points on curves over number fields. I also study rigid rational homotopy types, and show how to construct these for arbitrary varieties over a perfect field of positive characteristic. I prove that these agree with previous constructions in the (log-)smooth and proper case, and show that one can recover the usual rigid fundamental groups from these rational homotopy types. When the base field is finite, I show that the natural Frobenius structure on the rigid rational homotopy type is mixed, building on previous results in the log-smooth and proper case using a descent argument. Finally I turn to l-adic étale rational homotopy types, and show how to lift the Galois action on the geometric l-adic rational homotopy type from the homotopy category Ho(Q_l-dga) to get a Galois action on the dga representing the rational homotopy type. Together with a suitable lifted p-adic Hodge theory comparison theorem, this allows me to define a crystalline obstruction for the existence of integral points. I also study the continuity of the Galois action via a suitably constructed category of cosimplicial Q_l-algebras on a scheme.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Paradis, Philippe. "On the Rational Retraction Index." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23111.

Texte intégral
Résumé :
If X is a simply connected CW complex, then it has a unique (up to isomorphism) minimal Sullivan model. There is an important rational homotopy invariant, called the rational Lusternik–Schnirelmann of X, denoted cat0(X), which has an algebraic formulation in terms of the minimal Sullivan model of X. We study another such numerical invariant called the rational retraction index of X, denoted r0(X), which is defined in terms of the minimal Sullivan model of X and satisfies 0 ≤ r0(X) ≤ cat0(X). It was introduced by Cuvilliez et al. as a tool to estimate the rational Lusternik–Schnirelmann category of the total space of a fibration. In this thesis we compute the rational retraction index on a range of rationally elliptic spaces, including for example spheres, complex projective space, the biquotient Sp(1) \ Sp(3) / Sp(1) × Sp(1), the homogeneous space Sp(3)/U(3) and products of these. In particular, we focus on formal spaces and formulate a conjecture to answer a question posed in the original article of Cuvilliez et al., “If X is formal, what invariant of the algebra H∗(X;Q) is r0(X)?”
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yeung, R. Kacheong. "Stable rational interpolation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0021/NQ46952.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Barnes, David James. "Rational Equivariant Spectra." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hirsch, Benjamin. "Programming rational agents." Thesis, University of Liverpool, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415743.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Rational"

1

McAllister, Patrick H. Rational behavior and rational expectations. Stanford, Calif: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

János, Kollár. Rational and nearly rational varieties. Cambridge: Cambridge University Press, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Salge, Matthias. Rational Bubbles. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59181-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hindmoor, Andrew, and Brad Taylor. Rational Choice. London: Macmillan Education UK, 2015. http://dx.doi.org/10.1007/978-1-137-42744-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schulz, Volker, Rudolf Hänsel, and Varro E. Tyler. Rational Phytotherapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-98093-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Selten, Reinhard, ed. Rational Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-09664-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Schulz, Volker, Rudolf Hänsel, Mark Blumenthal, and Varro E. Tyler. Rational Phytotherapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09666-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Allingham, Michael. Rational Choice. London: Palgrave Macmillan UK, 1999. http://dx.doi.org/10.1007/978-1-349-14936-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Osbeck, Lisa M., and Barbara S. Held, eds. Rational Intuition. New York: Cambridge University Press, 2014. http://dx.doi.org/10.1017/cbo9781139136419.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Faltings, Gerd, and Gisbert Wüstholz. Rational Points. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-663-06812-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Rational"

1

Ramesh, Azadeh. "Rational." In Springer Theses, 1–10. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5527-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Roehner, Bertrand M. "Rational?" In Hidden Collective Factors in Speculative Trading, 47–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03048-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Roehner, Bertrand M. "Rational?" In Hidden Collective Factors in Speculative Trading, 47–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04428-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Marwala, Tshilidzi, and Evan Hurwitz. "Rational Choice and Rational Expectations." In Artificial Intelligence and Economic Theory: Skynet in the Market, 27–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66104-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Harris, Joe. "Rational Functions and Rational Maps." In Algebraic Geometry, 72–87. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2189-8_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bray, Margaret, and David M. Kreps. "Rational Learning and Rational Expectations." In Arrow and the Ascent of Modern Economic Theory, 597–625. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-07239-2_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Choffrut, Christian. "Rational Relations as Rational Series." In Theory Is Forever, 29–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27812-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bruin, N., and E. V. Flynn. "Rational Divisors in Rational Divisor Classes." In Lecture Notes in Computer Science, 132–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24847-7_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Papenfuß, Christina. "Rational Thermodynamics." In Continuum Thermodynamics and Constitutive Theory, 113–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43989-7_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Stillwell, John. "Rational Points." In Numbers and Geometry, 111–42. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Rational"

1

Kanwatchara, Kasidis, Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, Boonserm Kijsirikul, and Peerapon Vateekul. "Rational LAMOL: A Rationale-based Lifelong Learning Framework." In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-long.229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nemcova, Jana, Mihaly Petreczky, and Jan H. van Schuppen. "Rational observers of rational systems." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Azar, Pablo Daniel, and Silvio Micali. "Rational proofs." In the 44th symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2213977.2214069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Halpern, Joseph Y., and Xavier Vilaça. "Rational Consensus." In PODC '16: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2933057.2933088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Guo, Siyao, Pavel Hubáček, Alon Rosen, and Margarita Vald. "Rational arguments." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554845.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Peng, Hao, Roy Schwartz, Sam Thomson, and Noah A. Smith. "Rational Recurrences." In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/d18-1152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gautham Shenoy, Belman, Raghavendra Ananthapadmanabha, Badekara Sooryanarayana, Prasanna Poojary, and Vishu Kumar Mallappa. "Rational Wiener Index and Rational Schultz Index of Graphs." In RAiSE-2023. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/engproc2023059180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gutierrez, Julian, Lewis Hammond, Anthony W. Lin, Muhammad Najib, and Michael Wooldridge. "Rational Verification for Probabilistic Systems." In 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/30.

Texte intégral
Résumé :
Rational verification is the problem of determining which temporal logic properties will hold in a multi-agent system, under the assumption that agents in the system act rationally, by choosing strategies that collectively form a game-theoretic equilibrium. Previous work in this area has largely focussed on deterministic systems. In this paper, we develop the theory and algorithms for rational verification in probabilistic systems. We focus on concurrent stochastic games (CSGs), which can be used to model uncertainty and randomness in complex multi-agent environments. We study the rational verification problem for both non-cooperative games and cooperative games in the qualitative probabilistic setting. In the former case, we consider LTL properties satisfied by the Nash equilibria of the game and in the latter case LTL properties satisfied by the core. In both cases, we show that the problem is 2EXPTIME-complete, thus not harder than the much simpler verification problem of model checking LTL properties of systems modelled as Markov decision processes (MDPs).
Styles APA, Harvard, Vancouver, ISO, etc.
9

Khattak, Nasir, and D. J. Jeffrey. "Rational orthonormal matrices." In 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2017. http://dx.doi.org/10.1109/synasc.2017.00022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Couto, Ana C. C., and D. J. Jeffrey. "Rational Householder Transformations." In 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2018. http://dx.doi.org/10.1109/synasc.2018.00022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Rational"

1

Yamashige, Sarah. Rational Science. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-1087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Blackett, S. A. Rational polynomials. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/270796.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bansal, Ravi, A. Ronald Gallant, and George Tauchen. Rational Pessimism, Rational Exuberance, and Asset Pricing Models. Cambridge, MA: National Bureau of Economic Research, May 2007. http://dx.doi.org/10.3386/w13107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bullard, James, George W. Evans, and Seppo Honkapohja. Near-Rational Exuberance. Federal Reserve Bank of St. Louis, 2004. http://dx.doi.org/10.20955/wp.2004.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Constantinides, George. Rational Asset Prices. Cambridge, MA: National Bureau of Economic Research, March 2002. http://dx.doi.org/10.3386/w8826.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Darden, Michael, and Nicholas Papageorge. Rational Self-Medication. Cambridge, MA: National Bureau of Economic Research, December 2018. http://dx.doi.org/10.3386/w25371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhao, Bo. Rational Housing Bubble. Cambridge, MA: National Bureau of Economic Research, August 2013. http://dx.doi.org/10.3386/w19354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Diba, Behzad, and Herschel Grossman. Rational Inflationary Bubbles. Cambridge, MA: National Bureau of Economic Research, August 1986. http://dx.doi.org/10.3386/w2004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Allen, Franklin, and Gary Gorton. Rational Finite Bubbles. Cambridge, MA: National Bureau of Economic Research, May 1991. http://dx.doi.org/10.3386/w3707.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bulow, Jeremy, and Paul Klemperer. Rational Frenzies and Crashes. Cambridge, MA: National Bureau of Economic Research, September 1991. http://dx.doi.org/10.3386/t0112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie