Sommaire
Littérature scientifique sur le sujet « Régression non-paramétriques »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Régression non-paramétriques ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Régression non-paramétriques"
Pichette, François, Gilles Raîche, Sébastien Béland et David Magis. « Évaluation d’un test de lecture en anglais par deux méthodes de détection du fonctionnement différentiel d’items ». Revue des sciences de l’éducation 37, no 3 (11 mars 2013) : 543–68. http://dx.doi.org/10.7202/1014757ar.
Texte intégralBlondin, David, Anne Massiani et Pierre Ribereau. « Vitesses de convergence uniforme presque sûre d'estimateurs non-paramétriques de la régression ». Comptes Rendus Mathematique 340, no 7 (avril 2005) : 525–28. http://dx.doi.org/10.1016/j.crma.2005.02.008.
Texte intégralDupéré, Véronique, Éric Lacourse, Frank Vitaro et Richard E. Tremblay. « Méthodes d'analyse du changement fondées sur les trajectoires de développement individuelle : Modèles de régression mixtes paramétriques et non paramétriques[1] ». Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique 95, no 1 (juillet 2007) : 26–57. http://dx.doi.org/10.1177/075910630709500104.
Texte intégralRodriguez-Poo, Juan, Stefan Sperlich et Philippe Vieu. « Normalité asymptotique d'estimateurs de maximum de vraisemblance pour modèles non-paramétriques de régression multidimensionnelle ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no 1 (juillet 2001) : 61–64. http://dx.doi.org/10.1016/s0764-4442(01)02010-9.
Texte intégralBelzeaux, R. « Observance chez les patients souffrant de troubles bipolaires. Quels déterminants ? » European Psychiatry 28, S2 (novembre 2013) : 45–46. http://dx.doi.org/10.1016/j.eurpsy.2013.09.117.
Texte intégralLecocq, Aurélie, Laurier Fortin et Anne Lessard. « Caractéristiques individuelles, familiales et scolaires des élèves et leurs influences sur les probabilités de décrochage : analyses selon l’âge du décrochage ». Revue des sciences de l’éducation 40, no 1 (28 novembre 2014) : 11–37. http://dx.doi.org/10.7202/1027621ar.
Texte intégralThèses sur le sujet "Régression non-paramétriques"
Maistre, Samuel. « Des tests non paramétriques en régression ». Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S057/document.
Texte intégralIn this thesis, we study test statistics of the form : (H0) : E [U | X] = 0 p.s. contre (H1) : P {E [U | X] = 0} < 1 where U is the residual of some Y modeling with respect to covariates X. In this setup and for several particular cases – significance, quantile regression, functional data, single-index model –, we introduce test statistics that have pivotal asymptotic critical values. For each case, we also give a suitable bootstrap procedure for small samples. We prove the consistency against local – or Pitman – alternatives for the proposed test statistics, when such an alternative does not get close to the null hypothesis too fast. Simulation studies are used to check the effectiveness of the theoretical results in applications
Bontemps, Christophe. « Enveloppement dans les modèles de régression paramétriques et non-paramétriques ». Toulouse 1, 1995. http://www.theses.fr/1995TOU10010.
Texte intégralThe purpose of this dissertation is to contribute to research taking place in the field od encompassing in regression models. The main idea underlying this principle is to select a model only if it can account for, or explain the results of a rival model. The validation of the model is then done by comparing the results obtained with those of another model. First we define the notion of exact encompassing; it rests on the existence of a function linking the estimators of each models. The study of the pseudo-true value in the second model enables us to define the approximate encompassing. We then propose encompassing statistics based on the difference between one estimator of the second model and an estimator of the pseudo-true value. We test the validation of the encompassing model by studying asymptotically these statistics, once normalized. We then apply the concept of approximate encompassing to the problem of non-nested regressors choice. We present parametric encompassing tests and link them to classical tests. The results obtained in this parametric setting are then extended by using non-parametric techniques of regression estimation. We propose four statistics (parametric or functional) by combining parametric and non-parametric specifications for each of both models. We show that each of the statistics is normally distributed with zero mean. We also study the choice of the window-width affecting those results and we define the pseudo-true window-width connected to the pseudo-true value estimator. Finally, in the context of two non-parametric models, we propose a global encompassing criterion and we analyze its asymptotic behaviour
Maillot, Bertrand. « Propriétés asymptotiques de quelques estimateurs non-paramétriques pour des variables vectorielles et fonctionnelles ». Paris 6, 2008. http://www.theses.fr/2008PA066477.
Texte intégralTaillardat, Maxime. « Méthodes Non-Paramétriques de Post-Traitement des Prévisions d'Ensemble ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV072/document.
Texte intégralIn numerical weather prediction, ensemble forecasts systems have become an essential tool to quantifyforecast uncertainty and to provide probabilistic forecasts. Unfortunately, these models are not perfect and a simultaneouscorrection of their bias and their dispersion is needed.This thesis presents new statistical post-processing methods for ensemble forecasting. These are based onrandom forests algorithms, which are non-parametric.Contrary to state of the art procedures, random forests can take into account non-linear features of atmospheric states. They easily allowthe addition of covariables (such as other weather variables, seasonal or geographic predictors) by a self-selection of the mostuseful predictors for the regression. Moreover, we do not make assumptions on the distribution of the variable of interest. This new approachoutperforms the existing methods for variables such as surface temperature and wind speed.For variables well-known to be tricky to calibrate, such as six-hours accumulated rainfall, hybrid versions of our techniqueshave been created. We show that these versions (and our original methods) are better than existing ones. Especially, they provideadded value for extreme precipitations.The last part of this thesis deals with the verification of ensemble forecasts for extreme events. We have shown several properties ofthe Continuous Ranked Probability Score (CRPS) for extreme values. We have also defined a new index combining the CRPS and the extremevalue theory, whose consistency is investigated on both simulations and real cases.The contributions of this work are intended to be inserted into the forecasting and verification chain at Météo-France
Debbarh, Mohammed. « Quelques propriétés asymptotiques dans les modèles additifs de régression ». Paris 6, 2006. http://www.theses.fr/2006PA066020.
Texte intégralLAIB, NAAMANE. « Contribution à l'étude de l'estimation et du test non-paramétriques de la fonction de régression pour les données dépendantes ». Paris 6, 1992. http://www.theses.fr/1992PA066208.
Texte intégralComminges, Laëtitia, et Laëtitia Comminges. « Quelques contributions à la sélection de variables et aux tests non-paramétriques ». Phd thesis, Université Paris-Est, 2012. http://pastel.archives-ouvertes.fr/pastel-00804979.
Texte intégralNaulet, Zacharie. « Développement d'un modèle particulaire pour la régression indirecte non paramétrique ». Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED057/document.
Texte intégralThis dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements
Somé, Sobom Matthieu. « Estimations non paramétriques par noyaux associés multivariés et applications ». Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2030/document.
Texte intégralThis work is about nonparametric approach using multivariate mixed associated kernels for densities, probability mass functions and regressions estimation having supports partially or totally discrete and continuous. Some key aspects of kernel estimation using multivariate continuous (classical) and (discrete and continuous) univariate associated kernels are recalled. Problem of supports are also revised as well as a resolution of boundary effects for univariate associated kernels. The multivariate associated kernel is then defined and a construction by multivariate mode-dispersion method is provided. This leads to an illustration on the bivariate beta kernel with Sarmanov's correlation structure in continuous case. Properties of these estimators are studied, such as the bias, variances and mean squared errors. An algorithm for reducing the bias is proposed and illustrated on this bivariate beta kernel. Simulations studies and applications are then performed with bivariate beta kernel. Three types of bandwidth matrices, namely, full, Scott and diagonal are used. Furthermore, appropriated multiple associated kernels are used in a practical discriminant analysis task. These are the binomial, categorical, discrete triangular, gamma and beta. Thereafter, associated kernels with or without correlation structure are used in multiple regression. In addition to the previous univariate associated kernels, bivariate beta kernels with or without correlation structure are taken into account. Simulations studies show the performance of the choice of associated kernels with full or diagonal bandwidth matrices. Then, (discrete and continuous) associated kernels are combined to define mixed univariate associated kernels. Using the tools of unification of discrete and continuous analysis, the properties of the mixed associated kernel estimators are shown. This is followed by an R package, created in univariate case, for densities, probability mass functions and regressions estimations. Several smoothing parameter selections are implemented via an easy-to-use interface. Throughout the paper, bandwidth matrix selections are generally obtained using cross-validation and sometimes Bayesian methods. Finally, some additionnal informations on normalizing constants of associated kernel estimators are presented for densities or probability mass functions
Comminges, Laëtitia. « Quelques contributions à la sélection de variables et aux tests non-paramétriques ». Thesis, Paris Est, 2012. http://www.theses.fr/2012PEST1068/document.
Texte intégralReal-world data are often extremely high-dimensional, severely under constrained and interspersed with a large number of irrelevant or redundant features. Relevant variable selection is a compelling approach for addressing statistical issues in the scenario of high-dimensional and noisy data with small sample size. First, we address the issue of variable selection in the regression model when the number of variables is very large. The main focus is on the situation where the number of relevant variables is much smaller than the ambient dimension. Without assuming any parametric form of the underlying regression function, we get tight conditions making it possible to consistently estimate the set of relevant variables. Secondly, we consider the problem of testing a particular type of composite null hypothesis under a nonparametric multivariate regression model. For a given quadratic functional $Q$, the null hypothesis states that the regression function $f$ satisfies the constraint $Q[f] = 0$, while the alternative corresponds to the functions for which $Q[f]$ is bounded away from zero. We provide minimax rates of testing and the exact separation constants, along with a sharp-optimal testing procedure, for diagonal and nonnegative quadratic functionals. We can apply this to testing the relevance of a variable. Studying minimax rates for quadratic functionals which are neither positive nor negative, makes appear two different regimes: “regular” and “irregular”. We apply this to the issue of testing the equality of norms of two functions observed in noisy environments