Littérature scientifique sur le sujet « Repetitive DNA elements »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Repetitive DNA elements ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Repetitive DNA elements"
Liehr, Thomas. « Repetitive Elements in Humans ». International Journal of Molecular Sciences 22, no 4 (19 février 2021) : 2072. http://dx.doi.org/10.3390/ijms22042072.
Texte intégralPapin, Christophe, Abdulkhaleg Ibrahim, Stéphanie Le Gras, Amandine Velt, Isabelle Stoll, Bernard Jost, Hervé Menoni, Christian Bronner, Stefan Dimitrov et Ali Hamiche. « Combinatorial DNA methylation codes at repetitive elements ». Genome Research 27, no 6 (27 mars 2017) : 934–46. http://dx.doi.org/10.1101/gr.213983.116.
Texte intégralRequena, J. M., M. C. López et C. Alonso. « Genomic repetitive DNA elements of Trypanosoma cruzi ». Parasitology Today 12, no 7 (juillet 1996) : 279–83. http://dx.doi.org/10.1016/0169-4758(96)10024-7.
Texte intégralSurzycki, Stefan A., et William R. Belknap. « Characterization of Repetitive DNA Elements in Arabidopsis ». Journal of Molecular Evolution 48, no 6 (juin 1999) : 684–91. http://dx.doi.org/10.1007/pl00006512.
Texte intégralLower, Sarah E., Anne-Marie Dion-Côté, Andrew G. Clark et Daniel A. Barbash. « Special Issue : Repetitive DNA Sequences ». Genes 10, no 11 (6 novembre 2019) : 896. http://dx.doi.org/10.3390/genes10110896.
Texte intégralSerakıncı, N., B. Pedersen et J. Koch. « Expansion of repetitive DNA into cytogenetically visible elements ». Cytogenetic and Genome Research 92, no 3-4 (2001) : 182–85. http://dx.doi.org/10.1159/000056899.
Texte intégralFried, Claudia, Sonja J. Prohaska et Peter F. Stadler. « Exclusion of repetitive DNA elements from gnathostomeHox clusters ». Journal of Experimental Zoology 302B, no 2 (2004) : 165–73. http://dx.doi.org/10.1002/jez.b.20007.
Texte intégralDeininger, Prescott L., et Gary R. Daniels. « The recent evolution of mammalian repetitive DNA elements ». Trends in Genetics 2 (janvier 1986) : 76–80. http://dx.doi.org/10.1016/0168-9525(86)90183-6.
Texte intégralBollati, V., D. Galimberti, L. Pergoli, E. Dalla Valle, F. Barretta, F. Cortini, E. Scarpini, P. A. Bertazzi et A. Baccarelli. « DNA methylation in repetitive elements and Alzheimer disease ». Brain, Behavior, and Immunity 25, no 6 (août 2011) : 1078–83. http://dx.doi.org/10.1016/j.bbi.2011.01.017.
Texte intégralLo, Cecilia W. « Novel approach for restriction mapping repetitive DNA elements using DNA transformation ». Somatic Cell and Molecular Genetics 11, no 5 (septembre 1985) : 455–65. http://dx.doi.org/10.1007/bf01534839.
Texte intégralThèses sur le sujet "Repetitive DNA elements"
Carter, Andrew T. « VL30 : a mouse retrovirus-like family of repetitive DNA elements ». Thesis, University of Warwick, 1985. http://wrap.warwick.ac.uk/67115/.
Texte intégralMigeon, Pierre. « Comparative genomics of repetitive elements between maize inbred lines B73 and Mo17 ». Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35377.
Texte intégralGenetics Interdepartmental Program
Sanzhen Liu
The major component of complex genomes is repetitive elements, which remain recalcitrant to characterization. Using maize as a model system, we analyzed whole genome shotgun (WGS) sequences for the two maize inbred lines B73 and Mo17 using k-mer analysis to quantify the differences between the two genomes. Significant differences were identified in highly repetitive sequences, including centromere, 45S ribosomal DNA (rDNA), knob, and telomere repeats. Genotype specific 45S rDNA sequences were discovered. The B73 and Mo17 polymorphic k-mers were used to examine allele-specific expression of 45S rDNA in the hybrids. Although Mo17 contains higher copy number than B73, equivalent levels of overall 45S rDNA expression indicates that transcriptional or post-transcriptional regulation mechanisms operate for the 45S rDNA in the hybrids. Using WGS sequences of B73xMo17 doubled haploids, genomic locations showing differential repetitive contents were genetically mapped, revealing differences in organization of highly repetitive sequences between the two genomes. In an analysis of WGS sequences of HapMap2 lines, including maize wild progenitor, landraces, and improved lines, decreases and increases in abundance of additional sets of k-mers associated with centromere, 45S rDNA, knob, and retrotransposons were found among groups, revealing global evolutionary trends of genomic repeats during maize domestication and improvement.
Mazzuchelli, Juliana [UNESP]. « Identificação e caracterização de sequências repetidas de DNA no genoma do ciclídeo Astronotus ocellatus ». Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/102712.
Texte intégralConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Universidade Estadual Paulista (UNESP)
Uma grande porção do genoma da maioria dos organismos é composta por seqüências repetidas de DNA que foram considerados, por muitos anos, como DNA “egoísta” ou como DNA “lixo”. Pouca atenção tem sido dada a estes segmentos de DNA uma vez que eles não são transcritos em produtos codificantes ou funcionais. Atualmente diversos trabalhos têm sugerido o envolvimento destas seqüências na regulação e reparo de alguns genes, na diferenciação de cromossomos sexuais e na organização estrutural e funcional do genoma. Os estudos citogenético-moleculares, como o mapeamento físico cromossômico, têm demonstrado que as seqüências de DNA repetidas podem ser muito úteis como ferramentas para definir a estrutura e revelar a organização e evolução do genoma das espécies. No presente trabalho, vários elementos repetidos (AoHinfI-4, AoHaeIII-6, AoHaeIII-15) foram isolados, através de restrição enzimática, do genoma do ciclídeo sul-americano Astronotus ocellatus, popularmente conhecido como “Oscar” ou “Apaiari”. Estes elementos foram seqüenciados e utilizados como sondas para hibridação cromossômica para o estudo de seu padrão de distribuição no cariótipo. As seqüências dos elementos repetidos isolados por restrição enzimática apresentaram alta similaridade com outros DNAs repetidos de outras espécies de peixes já depositadas em banco de dados. Os resultados da hibridação in situ de todos os elementos utilizados mostraram um acúmulo de marcações preferencialmente centromérica em todos os cromossomos do complemento. Essas marcações também são coincidentes com a localização da heterocromatina evidenciada através do bandamento C, reforçando a idéia do acúmulo de DNA repetitivo em regiões heterocromáticas. Essa distribuição preferencialmente centromérica dos elementos repetidos isolados sugere que tais seqüências devam desempenhar...
In most organisms a great portion of the genome is composed of repetitive DNA sequences. However little attention has been given to these segments of DNA, which were considered by many years as selfish or “junk” DNA. On the other hand, several works have suggested the involvement of these sequences in the regulation and repair of some genes, in the differentiation of sex chromosomes and in the structural and functional organization of the genome. The cytogenetics and molecular studies, as the physical chromosome mapping, has been demonstrating that repetitive sequences can be very useful as tools to define the structure and to reveal the organization and evolution of the genome of the species. In the present work several repetitive elements (retrotransposons Rex1, Rex3 and Rex6; transposon Tc1; the elements AoHinfI-4, AoHaeIII-6, AoHaeIII-15) were isolated using PCR and enzymatic restriction digestion of the genome of the cichlid Astronotus ocellatus, popularly known as Oscar or Apaiari. These elements were sequenced and their genomic distribution determined by chromosomal in situ hybridization. The nucleotide sequences of the isolated elements showed high similarity to repetitive DNAs of other fish species available in public databases. The results of in situ hybridization showed an accumulation of all obtained elements preferentially in centromeres of all chromosomes of the complement. The chromosomal signals were also coincident with the location of the heterocromatins evidenced through the C banding, reinforcing the idea of the accumulation of repetitive DNA in heterocromatic areas. These preferential distribution in the centromeres, suggests that such sequences should play an important role in the functional organizational and structure of the centromeres and, thus in the genome of this species. The great majority of the studies using the physical chromosome mapping... (Complete abstract click electronic access below)
Glugoski, Larissa. « Análise de marcadores cromossômicos em Rineloricaria (Siluriformes : Loricariidae) com ênfase na diversidade cariotípica ». UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2017. http://tede2.uepg.br/jspui/handle/prefix/940.
Texte intégralThe Loricariidae family is the largest in the Siluriformes order, being comprised of eight subfamilies. One of these, the Loricariinae subfamily, shows great diversity in respect to the number of chromosomes and karyotype formula, varying in the diploid number (2n) from 36 to 74 chromosomes. This diverse range originated mainly from Robertsonian(Rb) rearrangements. Rineloricaria is the largest genre in the Loricariinae subfamily, its species ranging from 2n = 36 to 70 chromosomes. In spite of this, little is known about which kinds of repetitive DNA gave rise to the events of chromosome fusion or fission. Previous studies have revealed the presence of multiple 5S rDNA sites in specimens of Rineloricaria from the Paraná River Basin, associated to the Robertsonian fission/fusion events. The aim of this work was the molecular characterization of the fragile sites associated to the 5S rDNA, besides localizing in situ marker chromosomes in Rineloricaria latirostris from the Das Pedras River and R. latirostris from the Piumhi River (first described in this work), seeking to understand the 2n diversification in this group. Rineloricaria latirostris from the Pedras River exhibited 2n = 46 chromosomes, while those from the Piumhi River presented 2n = 48 chromosomes, and both had a fundamental number (FN) of 60. Fluorescence in situ hybridization (FISH) assays in R. latirostris from the Piumhi River revealed 2 chromosome pairs with 5S rDNA sites, pair 7 with 18S rDNA, and only terminal staining when subjected to a telomeric probe (TTAGGGn). The population of the Pedras river exhibited 5 pairs with 5S rDNA sites, the metacentric (m) pair 2 marked with 18S rDNA, TTAGGGn markers in the terminal regions of the chromosomes, and the presence of interstitial telomeric sites (ITS) in pairs m 1 and m 3. The latter, in synteny with 5S rDNA, is indicative of Robertsonian fusion events. The isolation, cloning and sequencing of the 5S rDNA revealed clones with high sequence identity to 5S rDNA from other species, in addition to the necessary regions for recognition and transcription by RNA polymerase III. One clone of ~700 bp exhibited a degenerated fragment of hAT transposon in its sequence. It was named degenerated 5S rDNA. The fluorescence in situ hybridization assay highlighted chromosomes with co-localized staining for 5S rDNA/hAT, 5S rDNA/degenerated 5S rDNA, and 5S rDNA/ITS (m 3 pair) in R. latirostris from das Pedras River. In R. latirostris from Piumhi River, there was no detection of degenerated 5S rDNA sites. These results allow us to infer the role of the hAT transposon in the dispersion of 5S rDNA sites in the population, since some studies have indicated a relation between 5S rDNA dispersion and transposons in fish. In conclusion, data obtained by this study indicate a possible association between the hAT and the dispersion of 5S rDNA sites and Robertsonian events in the studied population of R. latirostris. The presence of the 5S rDNA/degenerated 5S rDNA/ITS generates hotspots for chromosomal breakage, contributing to the large karyotype diversity found in Loricariidae.
A família Loricariidae é a mais numerosa dentro da ordem Siluriformes e abrange oito subfamílias. A subfamília Loricarinae apresenta uma grande diversidade no que diz respeito ao número de cromossomos e a fórmula cariotípica, com variação do número diploide (2n) de 36 a 74 cromossomos, sendo os rearranjos Robertsonianos (Rb) considerados os principais mecanismos para explicar esta variação cromossômica. Rineloricaria é o gênero mais numeroso de Loricariinae, com espécies apresentando 2n = 36 - 70 cromossomos. Contudo, pouco ainda se sabe sobre quais os tipos de DNAs repetitivos originaram os eventos de fissão e fusão cromossômica. Estudos anteriores revelaram a presença de sítios múltiplos de rDNA 5S em exemplares de Rineloricaria da bacia do Rio Paraná, associados aos eventos de fissão/fusão Robertsonianos. O objetivo deste trabalho foi a caracterização molecular de sítios frágeis associados ao rDNA 5S, além da localização in situ de marcadores cromossômicos em Rineloricaria latirostris do rio das Pedras e R. latirostris do rio Piumhi (pela primeira vez descrito neste trabalho), visando a compreensão da diversificação do 2n neste grupo. Rineloricaria latirostris do rio das Pedras apresentou 2n = 46 cromossomos, enquanto R. latirostris do rio Piumhi apresentou 2n = 48 cromossomos, ambos com número fundamental (NF) de 60. Ensaios de hibridação in situ fluorescente em R. latirostris do rio Piumhi revelaram 2 pares cromossômicos marcados com rDNA 5S, o par 7 marcado com rDNA 18S, além de apenas marcações terminais utilizando-se a sonda telomérica (TTAGGGn). A população do rio das Pedras apresentou 5 pares portadores de sítios de rDNA 5S, o par metacêntrico (m) 2 marcado com rDNA 18S, marcações de TTAGGGn nas regiões terminais dos cromossomos, além da presença de vestígios de sítios teloméricos intersticiais (interstitial telomeric sites - ITS) nos pares m 1 e m 3, sendo este último em sintenia com o rDNA 5S, indicativo de eventos de fusão Robertsoniana. O isolamento, clonagem e sequenciamento de fragmentos de rDNA 5S, revelaram clones apresentando alta identidade ao rDNA 5S de outras espécies, além das regiões necessárias para o reconhecimento e transcrição pela RNA polimerase III. Um dos clones de ~700 pb apresentou um fragmento do transposon hAT em sua sequência, já em intensa degeneração molecular, sendo denominado de rDNA 5S degenerado. A hibridação in situ fluorescente evidenciou cromossomos com marcações co-localizadas de rDNA 5S/hAT, rDNA 5S/rDNA 5S degenerado e rDNA 5S/ITS (no par m 3) em R. latirostris do rio da Pedras. Em R. latirostris do rio Piumhi, não foram detectados sítios com rDNA 5S degenerado. Estes resultados nos permitem inferir o papel do TE hAT na dispersão dos sítios de rDNA 5S na população estudada, visto que alguns estudos indicam haver uma relação entre a dispersão do rDNA 5S pelo genoma e TEs em peixes. Em conclusão, os dados obtidos neste estudo indicam uma possível associação entre o elemento hAT e a dispersão de sítios de rDNA 5S e eventos Robertsonianos presentes na população de R. latirostris estudada. A presença de rDNA 5S/rDNA 5S degenerado/ITS geram hotspots para as quebras cromossômicas, contribuindo assim para a ampla diversidade cariotípica encontrada em Loricariidae.
Wang, Suyue. « Characterization of a Human 28S Ribosomal RNA Retropseudogene and Other Repetitive DNA Sequence Elements Isolated from a Human X Chromosome-Specific Library ». Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc278083/.
Texte intégralMazzuchelli, Juliana. « Identificação e caracterização de sequências repetidas de DNA no genoma do ciclídeo Astronotus ocellatus / ». Botucatu : [s.n.], 2008. http://hdl.handle.net/11449/102712.
Texte intégralBanca: André Luís Laforga Vanzela
Banca: Luiz Antônio Carlos Bertollo
Resumo: Uma grande porção do genoma da maioria dos organismos é composta por seqüências repetidas de DNA que foram considerados, por muitos anos, como DNA "egoísta" ou como DNA "lixo". Pouca atenção tem sido dada a estes segmentos de DNA uma vez que eles não são transcritos em produtos codificantes ou funcionais. Atualmente diversos trabalhos têm sugerido o envolvimento destas seqüências na regulação e reparo de alguns genes, na diferenciação de cromossomos sexuais e na organização estrutural e funcional do genoma. Os estudos citogenético-moleculares, como o mapeamento físico cromossômico, têm demonstrado que as seqüências de DNA repetidas podem ser muito úteis como ferramentas para definir a estrutura e revelar a organização e evolução do genoma das espécies. No presente trabalho, vários elementos repetidos (AoHinfI-4, AoHaeIII-6, AoHaeIII-15) foram isolados, através de restrição enzimática, do genoma do ciclídeo sul-americano Astronotus ocellatus, popularmente conhecido como "Oscar" ou "Apaiari". Estes elementos foram seqüenciados e utilizados como sondas para hibridação cromossômica para o estudo de seu padrão de distribuição no cariótipo. As seqüências dos elementos repetidos isolados por restrição enzimática apresentaram alta similaridade com outros DNAs repetidos de outras espécies de peixes já depositadas em banco de dados. Os resultados da hibridação in situ de todos os elementos utilizados mostraram um acúmulo de marcações preferencialmente centromérica em todos os cromossomos do complemento. Essas marcações também são coincidentes com a localização da heterocromatina evidenciada através do bandamento C, reforçando a idéia do acúmulo de DNA repetitivo em regiões heterocromáticas. Essa distribuição preferencialmente centromérica dos elementos repetidos isolados sugere que tais seqüências devam desempenhar... (Resumo completo clicar acesso eletrônico abaixo)
Abstract: In most organisms a great portion of the genome is composed of repetitive DNA sequences. However little attention has been given to these segments of DNA, which were considered by many years as "selfish" or "junk" DNA. On the other hand, several works have suggested the involvement of these sequences in the regulation and repair of some genes, in the differentiation of sex chromosomes and in the structural and functional organization of the genome. The cytogenetics and molecular studies, as the physical chromosome mapping, has been demonstrating that repetitive sequences can be very useful as tools to define the structure and to reveal the organization and evolution of the genome of the species. In the present work several repetitive elements (retrotransposons Rex1, Rex3 and Rex6; transposon Tc1; the elements AoHinfI-4, AoHaeIII-6, AoHaeIII-15) were isolated using PCR and enzymatic restriction digestion of the genome of the cichlid Astronotus ocellatus, popularly known as "Oscar" or "Apaiari". These elements were sequenced and their genomic distribution determined by chromosomal in situ hybridization. The nucleotide sequences of the isolated elements showed high similarity to repetitive DNAs of other fish species available in public databases. The results of in situ hybridization showed an accumulation of all obtained elements preferentially in centromeres of all chromosomes of the complement. The chromosomal signals were also coincident with the location of the heterocromatins evidenced through the C banding, reinforcing the idea of the accumulation of repetitive DNA in heterocromatic areas. These preferential distribution in the centromeres, suggests that such sequences should play an important role in the functional organizational and structure of the centromeres and, thus in the genome of this species. The great majority of the studies using the physical chromosome mapping... (Complete abstract click electronic access below)
Mestre
Bikár, Robert. « Rekonstrukce opakujících se segmentů DNA ». Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255392.
Texte intégralMatocha, Petr. « Efektivní hledání překryvů u NGS dat ». Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363811.
Texte intégralHypský, Jan. « Rekonstrukce repetitivních elementů DNA ». Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385940.
Texte intégralBarbosa, Patrícia. « ELEMENTOS GENÔMICOS REPETITIVOS NO COMPLEXO Astyanax scabripinnis (TELEOSTEI, CHARACIDAE) ». UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2013. http://tede2.uepg.br/jspui/handle/prefix/982.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The most part of the eukaryote genomes is constituted for repetitive DNA or multiple copies DNA, which has already been considered as “junk”, may be associated to the heterochromatin. In this study three Astyanax scabripinnis populations from Pindamonhangaba and Guaratinguetá (SP, Brazil) rivers and stream and one population from Maringá (PR, Brazil) were analyzed about the nucleolar organizing region (NORs), As51 satellite DNA, 18S and 5S rDNA location. Moreover, repetitive sequences were isolated and mapped through Cot-1 technique, which showed homology with UnaL2, a LINE type retrotransposon. The fluorescent in situ hybridization (FISH), with the isolated built retrotransposon probe, evidenced disperse labeled and stronger in centromeric and telomeric chromosomes regions, co-located and interspersed with the 18S DNAr and As51, proven by the fiber-FISH technique. The B chromosome of those populations showed very conspicuous labeled with the LINE probe, also co-located with the As51 sequences. The NORs were actives in a single site of a homologue pair in all three populations, with no evidence that the transposable elements and repetitive DNA have influence in its regulation at the performed analyzes level.
A maior parte do genoma dos eucariotos é constituída por DNA repetitivo ou DNA de múltiplas cópias, o qual já foi considerado “lixo”, podendo estar associado à heterocromatina. Neste estudo foram analisadas três populações de Astyanax scabripinnis provenientes de rios e córregos de Pindamonhangaba e Guaratinguetá (SP, Brasil) e uma população da cidade de Maringá (PR, Brasil) quanto a localização das regiões organizadoras de nucléolo (RONs), DNA satélite As51, DNA ribossomal (DNAr) 18S e DNAr 5S. Ainda, foram isoladas e mapeadas sequências repetitivas por meio da técnica de Cot-1, que mostrou homologia com UnaL2, retrotransposon do tipo LINE. A hibridação in situ fluorescente (FISH), com sonda construída para o retrotransposon isolado, evidenciou marcações dispersas e mais concentradas em regiões centroméricas e teloméricas dos cromossomos, co-localizadas e interespaçadas com DNAr 18S e As51, comprovada pela técnica de fiber-FISH. O cromossomo B das populações mostrou marcações bastante conspícuas com a sonda LINE, também co-localizada com sequências As51. As RONs apresentaram-se ativas em sítios únicos de um par homólogo nas três populações, não havendo indícios de que elementos transponíveis e DNA repetitivo tenham influência na sua regulação ao nível das análises realizadas.
Livres sur le sujet "Repetitive DNA elements"
Carter, Andrew T. VL30 : A mouse retrovirus-like family of repetitive DNA elements. [s.l] : typescript, 1985.
Trouver le texte intégralBaller, Lisa Maria. Analysis of a dispersed repetitive DNA element in Sclerotinia sclerotiorum. Ottawa : National Library of Canada = Bibliothèque nationale du Canada, 1993.
Trouver le texte intégralBacterial Integrative Mobile Genetic Elements. Taylor & Francis Group, 2013.
Trouver le texte intégralChapitres de livres sur le sujet "Repetitive DNA elements"
von Sternberg, R. M., G. E. Novick, G. P. Gao et R. J. Herrera. « Genome canalization : the coevolution of Transposable and Interspersed Repetitive Elements with single copy DNA ». Dans Transposable Elements and Evolution, 108–41. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2028-9_9.
Texte intégralMadireddy, Advaitha, et Jeannine Gerhardt. « Replication Through Repetitive DNA Elements and Their Role in Human Diseases ». Dans Advances in Experimental Medicine and Biology, 549–81. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6955-0_23.
Texte intégralGilson, Eric, et Béatrice Horard. « Comprehensive DNA Methylation Profiling of Human Repetitive DNA Elements Using an MeDIP-on-RepArray Assay ». Dans Methods in Molecular Biology, 267–91. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-603-6_16.
Texte intégralTabish, Ali M., Andrea A. Baccarelli, Lode Godderis, Timothy M. Barrow, Peter Hoet et Hyang-Min Byun. « Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing® of Repetitive Elements ». Dans Methods in Molecular Biology, 201–7. New York, NY : Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2715-9_15.
Texte intégralYoshioka, Yasushi, Yoshito Takahashi, Shogo Matsumoto, Shoko Kojima, Ken Matsuoka, Kenzo Nakamura, Kazuhiko Ohshima, Norihiro Okada et Yasunori Machida. « Mechanisms of T-DNA transfer and integration into plant chromosomes : role of vir B, vir D4 and vir E2 and a short interspersed repetitive element (SINE) from tobacco ». Dans Developments in Plant Pathology, 231–48. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0746-4_17.
Texte intégralAvise, John C. « Wasteful Design : Repetitive DNA Elements ». Dans Inside the Human Genome, 107–33. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780195393439.003.0004.
Texte intégralLucchesi, John C. « DNA methylation and gene expression ». Dans Epigenetics, Nuclear Organization & ; Gene Function, 93–103. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831204.003.0008.
Texte intégralSætre, Glenn-Peter, et Mark Ravinet. « Genomes and the origin of genetic variation ». Dans Evolutionary Genetics, 25–48. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198830917.003.0002.
Texte intégralda Silva, Maelin, Daniele Aparecida Matoso, Vladimir Pavan Margarido, Eliana Feldberg et Roberto Ferreira Artoni. « Composition and Nature of Heterochromatin in the Electrical Fish (Knifefishes) Gymnotus (Gymnotiformes : Gymnotidae) ». Dans Cytogenetics - Classical and Molecular Strategies for Analysing Heredity Material. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97673.
Texte intégralActes de conférences sur le sujet "Repetitive DNA elements"
Zheng, Yinan, Jimmy Ren, Ryan A. Hlady, Keith D. Robertson, Robert L. Murphy, Lewis R. Roberts et Lifang Hou. « Abstract LB-235 : DNA methylation of individual repetitive elements in HCV infection-induced HCC ». Dans Proceedings : AACR Annual Meeting 2018 ; April 14-18, 2018 ; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-lb-235.
Texte intégralCadorna, Charles Anthon. « In silico Mining of DNA Repetitive Elements Based on Low Coverage Next-Generation Sequencing (NGS) Reads in Cocos nucifera ». Dans ASPB PLANT BIOLOGY 2020. USA : ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1332427.
Texte intégralChen, Pin-Chuan, Masahiko Hashimoto, Michael W. Mitchell, Dimitris E. Nikitopoulos, Steven A. Soper et Michael C. Murphy. « Limiting Performance of High Throughput Continuous Flow Micro-PCR ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62091.
Texte intégralChoi, Junseo, Bahador Farshchian et Sunggook Park. « Fabrication of Perforated Conical Nanopores in Freestanding Polymer Membranes Using Nanoimprint Lithography and Pressed Self-Perfection Method ». Dans ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87669.
Texte intégral