Littérature scientifique sur le sujet « Retrieval Augmented Generation (RAG) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Retrieval Augmented Generation (RAG) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Retrieval Augmented Generation (RAG)"
Mishra, Ankit, et Aniket Gupta. « Retrieval Augmented Generation (RAG) Model ». International Journal of Research Publication and Reviews 6, no 6 (janvier 2025) : 4690–93. https://doi.org/10.55248/gengpi.6.0125.0635.
Texte intégralLiu, Yicheng. « Retrieval-Augmented Generation : Methods, Applications and Challenges ». Applied and Computational Engineering 142, no 1 (24 avril 2025) : 99–108. https://doi.org/10.54254/2755-2721/2025.kl22312.
Texte intégralLong, Xinwei, Zhiyuan Ma, Ermo Hua, Kaiyan Zhang, Biqing Qi et Bowen Zhou. « Retrieval-Augmented Visual Question Answering via Built-in Autoregressive Search Engines ». Proceedings of the AAAI Conference on Artificial Intelligence 39, no 23 (11 avril 2025) : 24723–31. https://doi.org/10.1609/aaai.v39i23.34653.
Texte intégralHan, Binglan, Teo Susnjak et Anuradha Mathrani. « Automating Systematic Literature Reviews with Retrieval-Augmented Generation : A Comprehensive Overview ». Applied Sciences 14, no 19 (9 octobre 2024) : 9103. http://dx.doi.org/10.3390/app14199103.
Texte intégralChoi, Yein, Sungwoo Kim, Yipene Cedric Francois Bassole et Yunsick Sung. « Enhanced Retrieval-Augmented Generation Using Low-Rank Adaptation ». Applied Sciences 15, no 8 (17 avril 2025) : 4425. https://doi.org/10.3390/app15084425.
Texte intégralGrabuloski, Marko, Aleksandar Karadimce et Anis Sefidanoski. « Enhancing Language Models with Retrieval-Augmented Generation A Comparative Study on Performance ». WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS 22 (2 avril 2025) : 272–97. https://doi.org/10.37394/23209.2025.22.23.
Texte intégralChen, Jiawei, Hongyu Lin, Xianpei Han et Le Sun. « Benchmarking Large Language Models in Retrieval-Augmented Generation ». Proceedings of the AAAI Conference on Artificial Intelligence 38, no 16 (24 mars 2024) : 17754–62. http://dx.doi.org/10.1609/aaai.v38i16.29728.
Texte intégralDong, Guanting, Xiaoshuai Song, Yutao Zhu, Runqi Qiao, Zhicheng Dou et Ji-Rong Wen. « Toward Verifiable Instruction-Following Alignment for Retrieval Augmented Generation ». Proceedings of the AAAI Conference on Artificial Intelligence 39, no 22 (11 avril 2025) : 23796–804. https://doi.org/10.1609/aaai.v39i22.34551.
Texte intégralShaji, Edwin Alex, Jerishab M. Jerishab M, Leya Thomas, M. Viraj Prabhu et Asst Prof Chinchu M Pillai. « Survey on Speech Recognition and Retrieval-Augmented Generation ». International Journal of Advances in Engineering and Management 06, no 12 (décembre 2024) : 75–81. https://doi.org/10.35629/5252-06127581.
Texte intégralVaibhav Fanindra Mahajan. « Retrieval-augmented generation : The technical foundation of intelligent AI Chatbots ». World Journal of Advanced Research and Reviews 26, no 1 (30 avril 2025) : 4093–99. https://doi.org/10.30574/wjarr.2025.26.1.1571.
Texte intégralThèses sur le sujet "Retrieval Augmented Generation (RAG)"
Schaeffer, Marion. « Towards efficient Knowledge Graph-based Retrieval Augmented Generation for conversational agents ». Electronic Thesis or Diss., Normandie, 2025. http://www.theses.fr/2025NORMIR06.
Texte intégralConversational agents have become widespread in recent years. Today, they have transcended their initial purpose of simulating a conversation with a computer program and are now valuable tools for accessing information and carrying out various tasks, from customer service to personal assistance. With the rise of text-generative models and Large Language Models (LLMs), the capabilities of conversational agents have increased tenfold. However, they are now subject to hallucinations, producing false information. A popular technique to limit the risk of hallucinations is Retrieval Augmented Generation (RAG), which injects knowledge into a text generation process. Such injected knowledge can be drawn from Knowledge Graphs (KGs), which are structured machine-readable knowledge representations. Therefore, we explore Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) to build trusted conversational agents. We demonstrate our approach on a real-world use case for citizen support by building conversational agents for disability management in cities. We first present a history of conversational agents, introducing the approaches implemented over the years and the evaluation techniques. We then define KGs and ontologies, and explore construction and evaluation techniques. As we could not find a directly exploitable KG, our first contribution introduces the Ontology Learning Applied Framework (OLAF). This modular system is built for automated and repeatable KG construction from unstructured text. OLAF integrates linguistic, statistical, and LLM-based techniques to generate Minimum Viable Ontologies for specific domains. Applied to real-world datasets, OLAF demonstrates robust performance through gold-standard evaluations and task-specific Competency Questions. We detail the construction process for a KG about disability management in a French city. We then propose an architecture for KG-RAG systems to enhance information retrieval by aligning user queries with KG structures through entity linking, graph queries, and LLM-based retrieval approaches. We demonstrate our architecture on different use cases, which we evaluate using criteria such as performance, human preference, and environmental impact. While user preferences advantage Text-RAG, KG-RAG's reduced computational footprint underscores its potential for sustainable AI practices. Finally, we identify the critical part of the architecture as the retriever. Therefore, we tackle the retrieval task in our architecture by exploring embeddings in various contexts, i.e. improving EL, retrieval, and providing a caching system. We also propose mechanisms for handling multi-turn conversations. This work establishes a comprehensive framework for KG-RAG systems, combining the semantic depth of KGs with the generative capabilities of LLMs to deliver accurate, contextual, and sustainable conversational agents. Contributions include OLAF for scalable KG construction, a robust KG-RAG pipeline, and embedding-based enhancements for retrieval and interaction quality. By addressing conversational agents' industrial challenges, such as scalability, retrieval precision, and conversational coherence, this research lays the foundation for deploying KG-RAG systems in diverse and specialised domains
Busatta, Gianluca. « Italian Retrieval-Augmented Generative Question Answering System for Legal Domains ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Trouver le texte intégralLivres sur le sujet "Retrieval Augmented Generation (RAG)"
sahota, harpreet. Practical Retrieval Augmented Generation. Wiley & Sons, Incorporated, John, 2024.
Trouver le texte intégralsahota, harpreet. Practical Retrieval Augmented Generation. Wiley & Sons, Incorporated, John, 2024.
Trouver le texte intégralsahota, harpreet. Practical Retrieval Augmented Generation. Wiley & Sons, Incorporated, John, 2024.
Trouver le texte intégralChapitres de livres sur le sujet "Retrieval Augmented Generation (RAG)"
Parasuraman, Banu. « Spring AI and RAG (Retrieval-Augmented Generation) ». Dans Mastering Spring AI, 115–79. Berkeley, CA : Apress, 2024. https://doi.org/10.1007/979-8-8688-1001-5_4.
Texte intégralShan, Richard, et Tony Shan. « Retrieval-Augmented Generation Architecture Framework : Harnessing the Power of RAG ». Dans Lecture Notes in Computer Science, 88–104. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-77954-1_6.
Texte intégralGhadekar, Premanand, Shreyash Tekade, Dhawal Sakharwade, Sayee Zanzane, Ankur Tripathi et Shivam Tiwadi. « Real-time crisis response optimization with Retrieval Augmented Generation (RAG) ». Dans Intelligent Computing and Communication Techniques, 86–91. London : CRC Press, 2025. https://doi.org/10.1201/9781003530190-14.
Texte intégralBabaei Giglou, Hamed, Tilahun Abedissa Taffa, Rana Abdullah, Aida Usmanova, Ricardo Usbeck, Jennifer D’Souza et Sören Auer. « Scholarly Question Answering Using Large Language Models in the NFDI4DataScience Gateway ». Dans Lecture Notes in Computer Science, 3–18. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65794-8_1.
Texte intégralHolvoet, Laura, Michael van Bekkum et Aijse de Vries. « An Approach to Automated Instruction Generation with Grounding Using LLMs and RAG ». Dans Lecture Notes in Mechanical Engineering, 224–33. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-86489-6_23.
Texte intégralJay, Rabi. « Building Advanced Q&A and Search Applications Using Retrieval-Augmented Generation (RAG) ». Dans Generative AI Apps with LangChain and Python, 259–313. Berkeley, CA : Apress, 2024. https://doi.org/10.1007/979-8-8688-0882-1_7.
Texte intégralNazary, Fatemeh, Yashar Deldjoo et Tommaso di Noia. « Poison-RAG : Adversarial Data Poisoning Attacks on Retrieval-Augmented Generation in Recommender Systems ». Dans Lecture Notes in Computer Science, 239–51. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88717-8_18.
Texte intégralPradeep, Ronak, Nandan Thakur, Sahel Sharifymoghaddam, Eric Zhang, Ryan Nguyen, Daniel Campos, Nick Craswell et Jimmy Lin. « Ragnarök : A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track ». Dans Lecture Notes in Computer Science, 132–48. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88708-6_9.
Texte intégralWiratunga, Nirmalie, Ramitha Abeyratne, Lasal Jayawardena, Kyle Martin, Stewart Massie, Ikechukwu Nkisi-Orji, Ruvan Weerasinghe, Anne Liret et Bruno Fleisch. « CBR-RAG : Case-Based Reasoning for Retrieval Augmented Generation in LLMs for Legal Question Answering ». Dans Case-Based Reasoning Research and Development, 445–60. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63646-2_29.
Texte intégralOtto, Wolfgang, Sharmila Upadhyaya et Stefan Dietze. « Enhancing Software-Related Information Extraction via Single-Choice Question Answering with Large Language Models ». Dans Lecture Notes in Computer Science, 289–306. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65794-8_21.
Texte intégralActes de conférences sur le sujet "Retrieval Augmented Generation (RAG)"
Tural, Büşra, Zeynep Örpek et Zeynep Destan. « Retrieval-Augmented Generation (RAG) and LLM Integration ». Dans 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), 1–5. IEEE, 2024. https://doi.org/10.1109/isas64331.2024.10845308.
Texte intégralRappazzo, Brendan Hogan, Yingheng Wang, Aaron Ferber et Carla Gomes. « GEM-RAG : Graphical Eigen Memories for Retrieval Augmented Generation ». Dans 2024 International Conference on Machine Learning and Applications (ICMLA), 1259–64. IEEE, 2024. https://doi.org/10.1109/icmla61862.2024.00196.
Texte intégralRani, Maneeha, Bhupesh Kumar Mishra, Dhavalkumar Thakker et Mohammad Nouman Khan. « To Enhance Graph-Based Retrieval-Augmented Generation (RAG) with Robust Retrieval Techniques ». Dans 2024 18th International Conference on Open Source Systems and Technologies (ICOSST), 1–6. IEEE, 2024. https://doi.org/10.1109/icosst64562.2024.10871140.
Texte intégralBhat, Vani, Sree Divya Cheerla, Jinu Rose Mathew, Nupur Pathak, Guannan Liu et Jerry Gao. « Retrieval Augmented Generation (RAG) Based Restaurant Chatbot with AI Testability ». Dans 2024 IEEE 10th International Conference on Big Data Computing Service and Machine Learning Applications (BigDataService), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/bigdataservice62917.2024.00008.
Texte intégralDanuarta, Leo, Viny Christanti Mawardi et Viciano Lee. « Retrieval-Augmented Generation (RAG) Large Language Model For Educational Chatbot ». Dans 2024 Ninth International Conference on Informatics and Computing (ICIC), 1–6. IEEE, 2024. https://doi.org/10.1109/icic64337.2024.10957676.
Texte intégralSawarkar, Kunal, Abhilasha Mangal et Shivam Raj Solanki. « Blended RAG : Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers ». Dans 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR), 155–61. IEEE, 2024. http://dx.doi.org/10.1109/mipr62202.2024.00031.
Texte intégralAgrawal, Garima, Tharindu Kumarage, Zeyad Alghamdi et Huan Liu. « Mindful-RAG : A Study of Points of Failure in Retrieval Augmented Generation ». Dans 2024 2nd International Conference on Foundation and Large Language Models (FLLM), 607–11. IEEE, 2024. https://doi.org/10.1109/fllm63129.2024.10852457.
Texte intégralCai, Yucheng, Si Chen, Yuxuan Wu, Yi Huang, Junlan Feng et Zhijian Ou. « The 2nd Futuredial Challenge : Dialog Systems With Retrieval Augmented Generation (Futuredial-RAG) ». Dans 2024 IEEE Spoken Language Technology Workshop (SLT), 1091–98. IEEE, 2024. https://doi.org/10.1109/slt61566.2024.10832299.
Texte intégralXiao, Wei, Yu Liu, XiangLong Li, Feng Gao et JinGuang Gu. « TKG-RAG : A Retrieval-Augmented Generation Framework with Text-chunk Knowledge Graph ». Dans 2024 25th International Arab Conference on Information Technology (ACIT), 1–9. IEEE, 2024. https://doi.org/10.1109/acit62805.2024.10877117.
Texte intégralSong, Juntong, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong et Cheng Niu. « RAG-HAT : A Hallucination-Aware Tuning Pipeline for LLM in Retrieval-Augmented Generation ». Dans Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing : Industry Track, 1548–58. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-industry.113.
Texte intégralRapports d'organisations sur le sujet "Retrieval Augmented Generation (RAG)"
Rahman, Moqsadur, Krish Piryani, Aaron Sanchez, Sai Munikoti, Luis De La Torre, Maxwell Levin, Monika Akbar, Mahmud Hossain, Monowar Hasan et Mahantesh Halappanavar. Retrieval Augmented Generation for Robust Cyber Defense. Office of Scientific and Technical Information (OSTI), septembre 2024. http://dx.doi.org/10.2172/2474934.
Texte intégralSadat, Mohammad Ahnaf. CoralAI : A Retrieval-Augmented Generation Model for Coral-Related Queries. Iowa--Ames : Iowa State University, décembre 2024. https://doi.org/10.31274/cc-20250502-71.
Texte intégral