Littérature scientifique sur le sujet « Ricci »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ricci ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Ricci"

1

Stepanov, S. E., I. I. Tsyganok, and J. Mikeš. "Complete Riemannian manifolds with Killing — Ricci and Codazzi — Ricci tensors." Differential Geometry of Manifolds of Figures, no. 53 (2022): 112–17. http://dx.doi.org/10.5922/0321-4796-2022-53-10.

Texte intégral
Résumé :
The purpose of this paper is to prove of Liouville type theorems, i. e., theorems on the non-existence of Killing — Ric­ci and Codazzi — Ricci tensors on complete non-com­pact Riemannian manifolds. Our results complement the two classical vanishing theorems from the last chapter of fa­mous Besse’s monograph on Einstein manifolds.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Aytpanova, Aray Amangeldiyevna. "RICCI CURVATURE AND THE RICCI OPERATOR." Theoretical & Applied Science 1, no. 05 (2013): 12–17. http://dx.doi.org/10.15863/tas.2013.05.1.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Majhi, Pradip, Uday Chand De та Debabrata Kar. "η-Ricci Solitons on Sasakian 3-Manifolds". Annals of West University of Timisoara - Mathematics and Computer Science 55, № 2 (2017): 143–56. http://dx.doi.org/10.1515/awutm-2017-0019.

Texte intégral
Résumé :
AbstractIn this paper we studyη-Ricci solitons on Sasakian 3-manifolds. Among others we prove that anη-Ricci soliton on a Sasakian 3-manifold is anη-Einstien manifold. Moreover we considerη-Ricci solitons on Sasakian 3-manifolds with Ricci tensor of Codazzi type and cyclic parallel Ricci tensor. Beside these we study conformally flat andφ-Ricci symmetricη-Ricci soliton on Sasakian 3-manifolds. Alsoη-Ricci soliton on Sasakian 3-manifolds with the curvature conditionQ.R= 0 have been considered. Finally, we construct an example to prove the non-existence of properη-Ricci solitons on Sasakian 3-ma
Styles APA, Harvard, Vancouver, ISO, etc.
4

De, Uday Chand, and Krishanu Mandal. "Ricci Solitons and Gradient Ricci Solitons on N(k)-Paracontact Manifolds." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 3 (2019): 307–20. http://dx.doi.org/10.15407/mag15.03.307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Uygun, Pakize, Mehmet Atçeken та Tugba Mert. "Ricci-pseudosymmetric almost α -cosymplectic ( k , μ , ν ) -spaces admitting Ricci solitons". Ukrains’kyi Matematychnyi Zhurnal 77, № 1 (2025): 78. https://doi.org/10.3842/umzh.v77i1.7922.

Texte intégral
Résumé :
UDC 514.7 We study some types of Ricci pseudosymmetric α -cosymplectic ( k , μ , ν ) -spaces whose metric admits Ricci solitons. We present some results obtained for Ricci solitons on Ricci pseudosymmetric, projective Ricci pseudosymmetric, concircular Ricci pseudosymmetric, and W 1 -Ricci pseudosymmetric spaces. Some results on almost α -cosymplectic ( k , μ , ν ) -spaces are also presented. Finally, we give an example for the 5-dimensional case.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Almia, Priyanka, та Jaya Upreti. "Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds". Filomat 37, № 28 (2023): 9575–85. http://dx.doi.org/10.2298/fil2328575a.

Texte intégral
Résumé :
The objective of present research paper is to be investigate the geometric properties of ?-Ricci solitons on ?-Einstein para-Kenmotsu manifolds. In this manner, we consider ?-Ricci solitons on ?-Einstein para-Kenmotsu manifolds satistfying R.S = 0. Further, we obtain results for ?-Ricci solitons on ?-Einstein para-Kenmotsu manifolds with quasi-conformal flat property. Moreover, we get result for ?-Ricci solitins in ?-Einstein para-Kenmotsu manifolds admitting Codazzi type of Ricci tensor and cyclic parallel Ricci tensor, ?-quasi-conformally semi-symmetric, ?-Ricci symmetric and quasi-conformal
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lai, Yi. "Producing 3D Ricci flows with nonnegative Ricci curvature via singular Ricci flows." Geometry & Topology 25, no. 7 (2021): 3629–90. http://dx.doi.org/10.2140/gt.2021.25.3629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

ZHANG, ZHOU. "RICCI LOWER BOUND FOR KÄHLER–RICCI FLOW." Communications in Contemporary Mathematics 16, no. 02 (2014): 1350053. http://dx.doi.org/10.1142/s0219199713500533.

Texte intégral
Résumé :
We provide general discussion on the lower bound of Ricci curvature along Kähler–Ricci flows over closed manifolds. The main result is the non-existence of Ricci lower bound for flows with finite time singularities and non-collapsed global volume. As an application, we give examples showing that positivity of Ricci curvature would not be preserved by Ricci flow in general.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kim, Byung, Jin Choi, and Sang Lee. "On almost generalized gradient Ricci-Yamabe soliton." Filomat 38, no. 11 (2024): 3825–37. https://doi.org/10.2298/fil2411825k.

Texte intégral
Résumé :
Inthis paper, we study the geometric characterizations and classify of the Riemannian manifold with generalized gradient Ricci-Yamabe soliton or almost generalized gradient Ricci-Yamabe soliton. In addition, theorems were obtained to construct a model space with gradient Ricci-Yamabe soliton, general-ized gradient Ricci-Yamabe soliton, almost gradient Ricci-Yamabe soliton and almost generalized gradient Ricci-Yamabe soliton.
Styles APA, Harvard, Vancouver, ISO, etc.
10

De, Krishnendu, та Uday Chand De. "η-Ricci Solitons on Kenmotsu 3-Manifolds". Annals of West University of Timisoara - Mathematics and Computer Science 56, № 1 (2018): 51–63. http://dx.doi.org/10.2478/awutm-2018-0004.

Texte intégral
Résumé :
Abstract In the present paper we study η-Ricci solitons on Kenmotsu 3-manifolds. Moreover, we consider η-Ricci solitons on Kenmotsu 3-manifolds with Codazzi type of Ricci tensor and cyclic parallel Ricci tensor. Beside these, we study φ-Ricci symmetric η-Ricci soliton on Kenmotsu 3-manifolds. Also Kenmotsu 3-manifolds satisfying the curvature condition R.R = Q(S, R)is considered. Finally, an example is constructed to prove the existence of a proper η-Ricci soliton on a Kenmotsu 3-manifold.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Ricci"

1

Fritz, Hans [Verfasser], and Gerhard [Akademischer Betreuer] Dziuk. "Finite element approximation of Ricci Curvature and simulation of Ricci-DeTurck Flow = Finite Elemente Approximation der Ricci-Krümmung und Simulation des Ricci-DeTurck-Flusses." Freiburg : Universität, 2013. http://d-nb.info/1123476411/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Betancourt, de la Parra Alejandro. "Cohomogeneity one Ricci solitons." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8f924daf-d6e6-4150-96c2-d156a6a7815a.

Texte intégral
Résumé :
In this work we study the cohomogeneity one Ricci soliton equation viewed as a dynamical system. We are particularly interested in the relation between integrability of the associated system and the existence of explicit, closed form solutions of the soliton equation. The contents are organized as follows. The first chapter is an introduction to Ricci ow and Ricci solitons and their basic properties. We reformulate the rotationally symmetric Ricci soliton equation on Rn+1 as a system of ODE's following the treatment in [14]. In Chapter 2 we carry out a Painlevé analysis of the previous system
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bell, Thomas. "Uniqueness of Conformal Ricci Flow and Backward Ricci Flow on Homogeneous 4-Manifolds." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13231.

Texte intégral
Résumé :
In the first chapter we consider the question of uniqueness of conformal Ricci flow. We use an energy functional associated with this flow along closed manifolds with a metric of constant negative scalar curvature. Given initial conditions we use this functional to demonstrate the uniqueness of the solution to both the metric and the pressure function along conformal Ricci flow. In the next chapter we study backward Ricci flow of locally homogeneous geometries of 4-manifolds which admit compact quotients. We describe the longterm behavior of each class and show that many of the classes exhib
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dinkelbach, Jonathan. "Equivariant Ricci-Flow with Surgery." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-91361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Å, eÅ¡um NataÅ¡a 1975. "Limiting behavior of Ricci flows." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32244.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2004.<br>Includes bibliographical references (p. 83-85).<br>Consider the unnormalized Ricci flow ...Richard Hamilton showed that if the curvature operator is uniformly bounded under the flow for all times ... then the solution can be extended beyond T. In the thesis we prove that if the Ricci curvature is uniformly bounded under the flow for all times ... then the curvature tensor has to be uniformly bounded as well. In particular, this means that if the Ricci tensor stays uniformly bounded up to a finite time T, a R
Styles APA, Harvard, Vancouver, ISO, etc.
6

Coffey, Michael R. "Ricci flow and metric geometry." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/67924/.

Texte intégral
Résumé :
This thesis considers two separate problems in the field of Ricci flow on surfaces. Firstly, we examine the situation of the Ricci flow on Alexandrov surfaces, which are a class of metric spaces equipped with a notion of curvature. We extend the existence and uniqueness results of Thomas Richard in the closed case to the setting of non-compact Alexandrov surfaces that are uniformly non-collapsed. We complement these results with an extensive survey that collects together, for the first time, the essential topics in the metric geometry of Alexandrov spaces due to a variety of authors. Secondly,
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pimentel, Soraya Bianca Souza, and 92-98450-7876. "H-Quase Sóliton de Ricci." Universidade Federal do Amazonas, 2016. https://tede.ufam.edu.br/handle/tede/6392.

Texte intégral
Résumé :
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-22T14:42:33Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5)<br>Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-22T14:42:51Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hinde, Colin Douglas. "The essence of Ricci curvature." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1619436071&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wink, Matthias. "Ricci solitons and geometric analysis." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:3aae2c5e-58aa-42da-9a1b-ec15cacafdad.

Texte intégral
Résumé :
This thesis studies Ricci solitons of cohomogeneity one and uniform Poincaré inequalities for differentials on Riemann surfaces. In the two summands case, which assumes that the isotropy representation of the principal orbit consists of two inequivalent Ad-invariant irreducible summands, complete steady and expanding Ricci solitons have been detected numerically by Buzano-Dancer-Gallaugher-Wang. This work provides a rigorous construction thereof. A Lyapunov function is introduced to prove that the Ricci soliton metrics lie in a bounded region of an associated phase space. This also gives an a
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cremaschi, Laura. "Some Variations on Ricci Flow." Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/86207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Ricci"

1

Castel nuovo (Museum : Naples, Italy), ed. Paolo Ricci. Electa Napoli, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1765-1837, Ricci Stefano, ed. Stefano Ricci. Edizioni Polistampa, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

1659-1734, Ricci Sebastiano, ed. Sebastiano Ricci. B. Alfieri, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rizzi, Aldo. Sebastiano Ricci. Electa, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sonino, Annalisa Scarpa. Marco Ricci. Berenice, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Agency, Basic Skills, ed. Christina Ricci. Hodder & Stoughton, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Clotilde, Bertoni, and Ricci Corrado 1858-1934, eds. Carteggio Croce-Ricci. Il mulino, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1964-, Lu Peng, and Ni Lei 1969-, eds. Hamilton's Ricci flow. American Mathematical Society/Science Press, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Croce, Benedetto. Carteggio Croce-Ricci. Il mulino, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Croce, Benedetto. Carteggio Croce-Ricci. Il mulino, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Ricci"

1

Topping, Peter M. "Ricci Flow and Ricci Limit Spaces." In Geometric Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53725-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Villani, Cédric. "Ricci curvature." In Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ikeyama, Setsuro, H. Clark Maddux, Virginia Trimble, et al. "Ricci, Matteo." In The Biographical Encyclopedia of Astronomers. Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_1164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

MacDonnell, Joseph F. "Ricci, Matteo." In Biographical Encyclopedia of Astronomers. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_1164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sharma, Ramesh, and Sharief Deshmukh. "Ricci Solitons." In Infosys Science Foundation Series. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9258-4_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cardin, Franco. "Ricci Curbastro." In UNITEXT. Springer Milan, 2023. http://dx.doi.org/10.1007/978-88-470-4024-3_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chow, Bennett, Sun-Chin Chu, David Glickenstein, et al. "Ricci solitons." In Mathematical Surveys and Monographs. American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/135/01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chow, Bennett, Sun-Chin Chu, David Glickenstein, et al. "Kähler-Ricci flow and Kähler-Ricci solitons." In Mathematical Surveys and Monographs. American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/135/02.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Petersen, Peter. "Ricci Curvature Comparison." In Graduate Texts in Mathematics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26654-1_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Aubin, Thierry. "The Ricci Curvature." In Some Nonlinear Problems in Riemannian Geometry. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-13006-3_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Ricci"

1

Goodstein, Judy R. "Recognizing Ricci." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0430.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dancer, Andrew, Mckenzie Y. Wang, Carlos Herdeiro, and Roger Picken. "Cohomogeneity one Ricci solitons." In XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3599132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sonn, Ezri, Emil Saucan, Eli Appelboim, and Yehoshua Y. Zeevi. "Ricci flow for image processing." In 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI). IEEE, 2014. http://dx.doi.org/10.1109/eeei.2014.7005808.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tao, Mo, Shaoping Wang, Hong Chen, Zhi Liu, and Yi Lei. "Information Manifold and Ricci Curvature." In 2021 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2021. http://dx.doi.org/10.1109/icma52036.2021.9512823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xu, Eilza, Richard C. Wilson, and Edwin R. Hancock. "Curvature Estimation for Ricci Flow Embedding." In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guzhvina, Galina. "Ricci flow on almost flat manifolds." In Proceedings of the 10th International Conference on DGA2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790613_0012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ni, Chien-Chun, Yu-Yao Lin, Jie Gao, Xianfeng David Gu, and Emil Saucan. "Ricci curvature of the Internet topology." In IEEE INFOCOM 2015 - IEEE Conference on Computer Communications. IEEE, 2015. http://dx.doi.org/10.1109/infocom.2015.7218668.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kiosak, V., A. Savchenko, and L. Kusik. "On the properties of Ricci solitons." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’21. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0100792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

CAMCI, UḠUR. "RICCI COLLINEATIONS IN BIANCHI II SPACETIME." In Proceedings of the 12th Regional Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770523_0031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zimdahl, W., J. C. Fabris, S. del Campo, and R. Herrera. "Cosmology with Ricci-type dark energy." In II COSMOSUR: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Ricci"

1

Miller, Warner A. Discrete Ricci Flow in Higher Dimensions. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada619846.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gürses, Metin. Sigma Models, Minimal Surfaces and Some Ricci Flat Pseudo-Riemannian Geometries. GIQ, 2012. http://dx.doi.org/10.7546/giq-2-2001-171-180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eftekharinasab, Kaveh. A Simple Proof of the Short-time Existence and Uniqueness for Ricci Flow. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2019. http://dx.doi.org/10.7546/crabs.2019.05.01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Günsen, Seçkin, Leyla Onat, and Dilek Açikgöz Kaya. The Warped Product Manifold as a Gradient Ricci Soliton and Relation to Its Components. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2019. http://dx.doi.org/10.7546/crabs.2019.08.03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ricci, Glenn, Sarah Gaines, and Amanda Babson. Integrated coastal climate change vulnerability assessment: George Washington Birthplace National Monument. National Park Service, 2024. http://dx.doi.org/10.36967/2304901.

Texte intégral
Résumé :
Through a series of workshops, a team of National Park Service, University of Rhode Island and related experts conducted a climate change vulnerability assessment to integrate issues across natural resources, cultural resources, and facilities for George Washington Birthplace National Monument (NM). This assessment used existing methods (Ricci et al. 2019a) and data, and expert knowledge to understand the general trends in current (2022) and future (2050, 2100) vulnerability and adaptive capacity. Climate stressors included sea level rise (SLR), storm surge, flooding, erosion rates, and precip
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!