Articles de revues sur le sujet « Robots de terrain »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Robots de terrain ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Luneckas, Tomas, Mindaugas Luneckas, and Dainius Udris. "Terrain Irregularity Sensing by Evaluating Feet Coordinate Standard Deviation." Applied Sciences 15, no. 1 (2025): 411. https://doi.org/10.3390/app15010411.
Texte intégralŽák, Marek, Jaroslav Rozman, and František V. Zbořil. "Design and Control of 7-DOF Omni-directional Hexapod Robot." Open Computer Science 11, no. 1 (2020): 80–89. http://dx.doi.org/10.1515/comp-2020-0189.
Texte intégralZhang, Yinglong, Baoru Huang, Meng Hong, Chao Huang, Guan Wang, and Min Guo. "A Terrain Classification Method for Quadruped Robots with Proprioception." Electronics 14, no. 6 (2025): 1231. https://doi.org/10.3390/electronics14061231.
Texte intégralZHANG, HE, RUI WU, CHANGLE LI, et al. "ADAPTIVE MOTION PLANNING FOR HITCR-II HEXAPOD ROBOT." Journal of Mechanics in Medicine and Biology 17, no. 07 (2017): 1740040. http://dx.doi.org/10.1142/s0219519417400401.
Texte intégralHao, Qian, Zhaoba Wang, Junzheng Wang, and Guangrong Chen. "Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots." Sensors 20, no. 17 (2020): 4911. http://dx.doi.org/10.3390/s20174911.
Texte intégralCruz Ulloa, Christyan, Lourdes Sánchez, Jaime Del Cerro, and Antonio Barrientos. "Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation." Biomimetics 8, no. 3 (2023): 289. http://dx.doi.org/10.3390/biomimetics8030289.
Texte intégralSutar, Amey V., B. V. Hubballi, and Akash S. Bhosale. "Design and Development of a Four-Wheeled Mobile Robot (WMR) for Any Terrain." Journal of Mechanical Robotics 10, no. 1 (2025): 13–20. https://doi.org/10.46610/jomr.2025.v10i01.002.
Texte intégralHashimoto, Kenji, Yusuke Sugahara, Hun-Ok Lim, and Atsuo Takanishi. "Biped Landing Pattern Modification Method and Walking Experiments in Outdoor Environment." Journal of Robotics and Mechatronics 20, no. 5 (2008): 775–84. http://dx.doi.org/10.20965/jrm.2008.p0775.
Texte intégralXue, Yuquan, Liming Wang, Bi He, Yonghui Zhao, Yang Wang, and Longmei Li. "Research on Environmental Adaptability of Force–Position Hybrid Control for Quadruped Robots Based on Model Predictive Control." Electronics 14, no. 8 (2025): 1604. https://doi.org/10.3390/electronics14081604.
Texte intégralChen, Yang, Yao Wu, Wei Zeng, and Shaoyi Du. "Kinematics Model Estimation of 4W Skid-Steering Mobile Robots Using Visual Terrain Classification." Journal of Robotics 2023 (October 11, 2023): 1–12. http://dx.doi.org/10.1155/2023/1632563.
Texte intégralPecie, Robert Florian, Mihai Olimpiu Tătar, and Călin Rusu. "Studies on mobile robots for all types of terrain." MATEC Web of Conferences 343 (2021): 08015. http://dx.doi.org/10.1051/matecconf/202134308015.
Texte intégralHuang, Han, Yu Feng, Xiong Yang, Liu Yang, and Yajing Shen. "An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability." Micromachines 13, no. 10 (2022): 1578. http://dx.doi.org/10.3390/mi13101578.
Texte intégralLi, Daxian, Wu Wei, and Zhiying Qiu. "Combined Reinforcement Learning and CPG Algorithm to Generate Terrain-Adaptive Gait of Hexapod Robots." Actuators 12, no. 4 (2023): 157. http://dx.doi.org/10.3390/act12040157.
Texte intégralDr., M. Sampath Kumar, Mohanty Anchal, and Beesu |. E. Sai Kiran Meghana. "All Terrain Offensive and Defensive Robot." International Journal of Trend in Scientific Research and Development 3, no. 3 (2019): 1438–40. https://doi.org/10.31142/ijtsrd23370.
Texte intégralLi, Xu, Songyuan Zhang, Haitao Zhou, Haibo Feng, and Yili Fu. "Locomotion Adaption for Hydraulic Humanoid Wheel-Legged Robots Over Rough Terrains." International Journal of Humanoid Robotics 18, no. 01 (2021): 2150001. http://dx.doi.org/10.1142/s0219843621500018.
Texte intégralJia, Yan, Xiao Luo, Baoling Han, Guanhao Liang, Jiaheng Zhao, and Yuting Zhao. "Stability Criterion for Dynamic Gaits of Quadruped Robot." Applied Sciences 8, no. 12 (2018): 2381. http://dx.doi.org/10.3390/app8122381.
Texte intégralMamiya, Shotaro, Shigenori Sano, and Naoki Uchiyama. "Foot Structure with Divided Flat Soles and Springs for Legged Robots and Experimental Verification." Journal of Robotics and Mechatronics 28, no. 6 (2016): 799–807. http://dx.doi.org/10.20965/jrm.2016.p0799.
Texte intégralBenyeogor, Mbadiwe S., Oladayo O. Olakanmi, and Sushant Kumar. "Design of Quad-Wheeled Robot for Multi-Terrain Navigation." Scientific Review, no. 62 (February 5, 2020): 14–22. http://dx.doi.org/10.32861/sr.62.14.22.
Texte intégralLuneckas, Mindaugas, Tomas Luneckas, and Dainius Udris. "Leg placement algorithm for foot impact force minimization." International Journal of Advanced Robotic Systems 15, no. 1 (2018): 172988141775151. http://dx.doi.org/10.1177/1729881417751512.
Texte intégralZheng, Yilei, Yueqi Zhang, Jingjun Yu, Weidong Guo, and Yan Xie. "Terrain-Aware Hierarchical Control Framework for Dynamic Locomotion of Humanoid Robots." Electronics 14, no. 7 (2025): 1264. https://doi.org/10.3390/electronics14071264.
Texte intégralBekhti, Mohammed Abdessamad, and Yuichi Kobayashi. "Regressed Terrain Traversability Cost for Autonomous Navigation Based on Image Textures." Applied Sciences 10, no. 4 (2020): 1195. http://dx.doi.org/10.3390/app10041195.
Texte intégralConduraru Slatineanu, Alina, Ioan Doroftei, and Ionel Conduraru. "Design and Kinematic Aspects of a Hybrid Locomotion Robot." Advanced Materials Research 1036 (October 2014): 764–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.764.
Texte intégralXu, He, X. Z. Gao, Yan Xu, et al. "Continuous mobility of mobile robots with a special ability for overcoming driving failure on rough terrain." Robotica 35, no. 10 (2016): 2076–96. http://dx.doi.org/10.1017/s0263574716000606.
Texte intégralZong, Chengguo, Zhijian Ji, Junzhi Yu, and Haisheng Yu. "An angle-changeable tracked robot with human-robot interaction in unstructured environments." Assembly Automation 40, no. 4 (2020): 565–75. http://dx.doi.org/10.1108/aa-11-2018-0231.
Texte intégralZhuang, Hongchao, Jiaju Wang, Ning Wang, et al. "A Review of Foot–Terrain Interaction Mechanics for Heavy-Duty Legged Robots." Applied Sciences 14, no. 15 (2024): 6541. http://dx.doi.org/10.3390/app14156541.
Texte intégralBae, Junseong, Myeongjin Kim, Bongsub Song, Maolin Jin, and Dongwon Yun. "Snake Robot with Driving Assistant Mechanism." Applied Sciences 10, no. 21 (2020): 7478. http://dx.doi.org/10.3390/app10217478.
Texte intégralChen, Liuhongxu, Ping Du, Pengfei Zhan, and Bo Xie. "Gait Learning for Hexapod Robot Facing Rough Terrain Based on Dueling-DQN Algorithm." International Journal of Computer Science and Information Technology 2, no. 1 (2024): 408–24. http://dx.doi.org/10.62051/ijcsit.v2n1.44.
Texte intégralLuneckas, Mindaugas, Tomas Luneckas, Jonas Kriaučiūnas, et al. "Hexapod Robot Gait Switching for Energy Consumption and Cost of Transport Management Using Heuristic Algorithms." Applied Sciences 11, no. 3 (2021): 1339. http://dx.doi.org/10.3390/app11031339.
Texte intégralZhang, Yilin, Jiayu Zeng, Huimin Sun, Honglin Sun, and Kenji Hashimoto. "Dual-Layer Reinforcement Learning for Quadruped Robot Locomotion and Speed Control in Complex Environments." Applied Sciences 14, no. 19 (2024): 8697. http://dx.doi.org/10.3390/app14198697.
Texte intégralŽák, Marek, Jaroslav Rozman, and František V. Zbořil. "Energy Efficiency of a Wheeled Bio-Inspired Hexapod Walking Robot in Sloping Terrain." Robotics 12, no. 2 (2023): 42. http://dx.doi.org/10.3390/robotics12020042.
Texte intégralRanjan, Rahul, Seungjae Lee, and Joongeup Kye. "Design of Tactical Multipurpose All–Terrain Mobile Robot." International Journal of Membrane Science and Technology 10, no. 2 (2023): 2224–37. http://dx.doi.org/10.15379/ijmst.v10i2.2799.
Texte intégralLuneckas, Tomas. "EVALUATING TERRAIN IRREGULARITY BY ROBOT POSTURE / PAVIRŠIAUS NETOLYGUMO VERTINIMAS PAGAL ROBOTO PADĖTĮ." Mokslas - Lietuvos ateitis 3, no. 1 (2011): 96–99. http://dx.doi.org/10.3846/mla.2011.020.
Texte intégralZha, Fusheng, Chen Chen, Wei Guo, Penglong Zheng, and Junyi Shi. "A free gait controller designed for a heavy load hexapod robot." Advances in Mechanical Engineering 11, no. 3 (2019): 168781401983836. http://dx.doi.org/10.1177/1687814019838369.
Texte intégralKouame, Yann Olivier Akansie, C. Biradar Rajashekhar, Rajendra Karthik, and D. Devanagavi Geetha. "A terrain data collection sensor box towards a better analysis of terrains conditions." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 4 (2024): 4388–402. https://doi.org/10.11591/ijai.v13.i4.pp4388-4402.
Texte intégralOlivier Akansie, Kouame Yann, Rajashekhar C. Biradar, Karthik Rajendra, and Geetha D. Devanagavi. "A terrain data collection sensor box towards a better analysis of terrains conditions." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 4 (2024): 4388. http://dx.doi.org/10.11591/ijai.v13.i4.pp4388-4402.
Texte intégralMrva, Jakub, Martin Stejskal, and Jan Faigl. "ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT." Acta Polytechnica CTU Proceedings 2, no. 2 (2015): 34–39. http://dx.doi.org/10.14311/app.2015.1.0034.
Texte intégralConduraru Slatineanu, Alina, Ioan Doroftei, Ionel Conduraru, and Dorin Luca. "Hexapod Locomotion of a Leg-Wheel Hybrid Mobile Robot." Applied Mechanics and Materials 658 (October 2014): 581–86. http://dx.doi.org/10.4028/www.scientific.net/amm.658.581.
Texte intégralZhao, Kai, Mingming Dong, and Liang Gu. "A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots." Mathematical Problems in Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/3938502.
Texte intégralBazeille, Stéphane, Jesus Ortiz, Francesco Rovida, et al. "Active camera stabilization to enhance the vision of agile legged robots." Robotica 35, no. 4 (2015): 942–60. http://dx.doi.org/10.1017/s0263574715000909.
Texte intégralGao, Xin’an, Xiaorong Guan, Yanlong Yang, and Jingmin Zhang. "Design and Ground Performance Evaluation of a Multi-Joint Wheel-Track Composite Mobile Robot for Enhanced Terrain Adaptability." Applied Sciences 13, no. 12 (2023): 7270. http://dx.doi.org/10.3390/app13127270.
Texte intégralZhu, Yaguang, Kailu Luo, Chao Ma, Qiong Liu, and Bo Jin. "Superpixel Segmentation Based Synthetic Classifications with Clear Boundary Information for a Legged Robot." Sensors 18, no. 9 (2018): 2808. http://dx.doi.org/10.3390/s18092808.
Texte intégralZheng, Qingyuan, Yu Tian, Yang Deng, Xianjin Zhu, Zhang Chen, and Bing Liang. "Reinforcement Learning-Based Control of Single-Track Two-Wheeled Robots in Narrow Terrain." Actuators 12, no. 3 (2023): 109. http://dx.doi.org/10.3390/act12030109.
Texte intégralRafeeq, Mohammed, Siti Fauziah Toha, Salmiah Ahmad, Mohd Asyraf Razib, Ahmad Syahrin Idris, and Mohammad Osman Tokhi. "Amphibious Robots Locomotion Strategies in Unstructured Complex Environments: A Review." Platform : A Journal of Engineering 8, no. 1 (2024): 12. http://dx.doi.org/10.61762/pajevol8iss1art26197.
Texte intégralSZABARI, MIKULAS, and RADEK KNOFLICEK. "LEGGED ROBOT LOCOMOTION IN RESISTIVE TERRAIN: A COMPARISON OF TWO METHODS." MM Science Journal 2022, no. 4 (2022): 6040–48. http://dx.doi.org/10.17973/mmsj.2022_11_2022047.
Texte intégralYang, Kuo, Xinhui Liu, Changyi Liu, and Ziwei Wang. "Motion-Control Strategy for a Heavy-Duty Transport Hexapod Robot on Rugged Agricultural Terrains." Agriculture 13, no. 11 (2023): 2131. http://dx.doi.org/10.3390/agriculture13112131.
Texte intégralNakajima, Shuro. "RT-Mover: a rough terrain mobile robot with a simple leg–wheel hybrid mechanism." International Journal of Robotics Research 30, no. 13 (2011): 1609–26. http://dx.doi.org/10.1177/0278364911405697.
Texte intégralHuskić, Goran, Sebastian Buck, Matthieu Herrb, Simon Lacroix, and Andreas Zell. "High-speed path following control of skid-steered vehicles." International Journal of Robotics Research 38, no. 9 (2019): 1124–48. http://dx.doi.org/10.1177/0278364919859634.
Texte intégralPookkuttath, Sathian, Raihan Enjikalayil Abdulkader, Mohan Rajesh Elara, and Prabakaran Veerajagadheswar. "AI-Enabled Vibrotactile Feedback-Based Condition Monitoring Framework for Outdoor Mobile Robots." Mathematics 11, no. 18 (2023): 3804. http://dx.doi.org/10.3390/math11183804.
Texte intégralDong, Yunlong, Wei Guo, Fusheng Zha, Yizhou Liu, Chen Chen, and Lining Sun. "A Vision-Based Two-Stage Framework for Inferring Physical Properties of the Terrain." Applied Sciences 10, no. 18 (2020): 6473. http://dx.doi.org/10.3390/app10186473.
Texte intégralMarín Arciniegas, Jairo José, and Oscar Andrés Vivas Albán. "Design and Construction of a Snake-Like Robot Implementing Rectilinear and Sidewinding Gait Motions." TecnoLógicas 26, no. 56 (2022): e2412. http://dx.doi.org/10.22430/22565337.2412.
Texte intégral