Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Rubreno.

Articles de revues sur le sujet « Rubreno »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Rubreno ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kadlečíková, Magdaléna, Juraj Breza, Jozef Liday, Helmut Sitter et Shaima Al-Baqi. « Raman Spectra of Two Samples of Rubrene Layers ». Journal of Electrical Engineering 61, no 5 (1 septembre 2010) : 296–98. http://dx.doi.org/10.2478/v10187-010-0044-1.

Texte intégral
Résumé :
Raman Spectra of Two Samples of Rubrene Layers This experimental work deals with measuring Raman spectra of rubrene. The objective is to optimize the measurement procedure of rubrene layers on a substrate. The main outcome of the work is identification of rubrene and of the single-crystalline nature of the measured spots of the rubrene layer.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zeis, Roswitha, Celine Besnard, Theo Siegrist, Carl Schlockermann, Xiaoliu Chi et Christian Kloc. « Field Effect Studies on Rubrene and Impurities of Rubrene ». Chemistry of Materials 18, no 2 (janvier 2006) : 244–48. http://dx.doi.org/10.1021/cm0502626.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Choi, Mun Soo, et Ho-Nyeon Lee. « Light-Emission and Electricity-Generation Properties of Photovoltaic Organic Light-Emitting Diodes with Rubrene/DBP Light-Emission and Electron-Donating Layers ». International Journal of Photoenergy 2014 (2014) : 1–6. http://dx.doi.org/10.1155/2014/361861.

Texte intégral
Résumé :
We report the dependence of the characteristics of photovoltaic organic light-emitting diodes (PVOLEDs) on the composition of the light-emission and electron-donating layer (EL-EDL). 5,6,11,12-Tetraphenylnaphthacene (rubrene): dibenzo{[f,f′]-4,4′,7,7′-tetraphenyl}diindeno[1,2,3-cd:1′,2′,3′-lm]perylene (DBP) was used to form the EL-EDL, and C60was used as an electron-accepting layer (EAL) material. A half-gap junction was formed at the EAL/EL-EDL interface. As the rubrene ratio in the EL-EDL increased, the emission spectra became blue-shifted and the light-emission efficiency increased. The highest emission efficiency was achieved with an EL-EDL composed of 95% rubrene and 5% DBP. The short-circuit current decreased as the rubrene content increased up to 50% and then saturated, while the open-circuit voltage was almost unchanged regardless of the rubrene content. The power-conversion efficiency and fill factor increased as the composition of the EL-EDL approached that of pure materials. By controlling the rubrene : DBP ratio, the emission color could be adjusted. The emission efficiency of devices with mixed rubrene/DBP EL-EDLs could be greater than that of either pure rubrene or pure DBP devices. We obtained an overall power-conversion efficiency of 3% and a fill factor greater than 50%.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ly, Jack T., Steven A. Lopez, Janice B. Lin, Jae Joon Kim, Hyunbok Lee, Edmund K. Burnett, Lei Zhang, Alán Aspuru-Guzik, K. N. Houk et Alejandro L. Briseno. « Oxidation of rubrene, and implications for device stability ». Journal of Materials Chemistry C 6, no 14 (2018) : 3757–61. http://dx.doi.org/10.1039/c7tc05775j.

Texte intégral
Résumé :
In studying the formation and thermally activated cycloreversion of oxidized rubrene to pristine rubrene, we observed an irreversible, second stage oxidized product. Understanding the formation of the irreversible adduct will help one design more chemically robust rubrene derivatives.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ji, Gengwu, Guanhaojie Zheng, Bin Zhao, Fei Song, Xiaonan Zhang, Kongchao Shen, Yingguo Yang et al. « Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface ». Physical Chemistry Chemical Physics 19, no 9 (2017) : 6546–53. http://dx.doi.org/10.1039/c6cp07592d.

Texte intégral
Résumé :
The promising rubrene-based PSC device performance demonstrates the potential of rubrene as a suitable hole transport material in PSCs due to an optimal energy level alignment at the rubrene/CH3NH3PbI3 interface.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Uttiya, Sureeporn, Luisa Raimondo, Marcello Campione, Luciano Miozzo, Abderrahim Yassar, Massimo Moret, Enrico Fumagalli, Alessandro Borghesi et Adele Sassella. « Stability to photo-oxidation of rubrene and fluorine-substituted rubrene ». Synthetic Metals 161, no 23-24 (janvier 2012) : 2603–6. http://dx.doi.org/10.1016/j.synthmet.2011.08.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Jinfeng, Zhenjie Ni, Xiaotao Zhang, Rongjin Li, Huanli Dong et Wenping Hu. « Enhanced stability of a rubrene analogue with a brickwork packing motif ». Journal of Materials Chemistry C 5, no 33 (2017) : 8376–79. http://dx.doi.org/10.1039/c7tc01790a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Uttiya, S., L. Miozzo, E. M. Fumagalli, S. Bergantin, R. Ruffo, M. Parravicini, A. Papagni, M. Moret et A. Sassella. « Connecting molecule oxidation to single crystal structural and charge transport properties in rubrene derivatives ». J. Mater. Chem. C 2, no 21 (2014) : 4147–55. http://dx.doi.org/10.1039/c3tc32527j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kameya, Megumi, Toshio Naito et Tamotsu Inabe. « Rubrene Cation Radical Stabilized by Polyiodide Chains in the (Rubrene)I9Crystal ». Bulletin of the Chemical Society of Japan 73, no 1 (janvier 2000) : 61–65. http://dx.doi.org/10.1246/bcsj.73.61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, Jin Woo, Kihyun Kim, Dong Hyuk Park, Mi Yeon Cho, Yong Baek Lee, Jin Sun Jung, Dae-Chul Kim, Jeongyong Kim et Jinsoo Joo. « Light-Emitting Rubrene Nanowire Arrays : A Comparison with Rubrene Single Crystals ». Advanced Functional Materials 19, no 5 (10 mars 2009) : 704–10. http://dx.doi.org/10.1002/adfm.200801180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Radiunas, Edvinas, Manvydas Dapkevičius, Steponas Raišys, Saulius Juršėnas, Augustina Jozeliūnaitė, Tomas Javorskis, Ugnė Šinkevičiūtė, Edvinas Orentas et Karolis Kazlauskas. « Impact of t-butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion ». Physical Chemistry Chemical Physics 22, no 14 (2020) : 7392–403. http://dx.doi.org/10.1039/d0cp00144a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chen, Liang, Jin Xiang Deng, Min Cui, Kong Le, Ren Gang Chen et Zi Jia Zhang. « Surface Plasmon Enhanced Photoluminescence of the Rubrene Film by Silver Nanoparticles ». Materials Science Forum 815 (mars 2015) : 54–60. http://dx.doi.org/10.4028/www.scientific.net/msf.815.54.

Texte intégral
Résumé :
Silver nanoparticles (Ag NPs) thin film were fabricated by radio-frequency (RF) magnetron sputtering on the quartz substrates in different sputtering time, then covered with a layer of rubrene by means of thermal evaporation. The sputtering time for preparation of Ag NPs could be tuned to increase the spectral overlap between the emission spectra of rubrene and surface plasmon resonance spectra, so that the surface plasmon enhancement was improved. Using a Fluorescence spectrophotometer (FLS920), the photoluminescence (PL) intensity of the rubrene/Ag NPs thin film was up to 22 times higher than that as-deposited rubrene thin film. It is attributed to the energy transfer effect in the surface plasmon resonance coupling, the surface plasmons mediated emission, and light scattering.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Xiao, De Bao, Li Li Liu et Zhan Jun Gu. « Electrogenerated Chemiluminescence and Sensory Property of Rubrene Microparticles Immobilized on ITO Electrode ». Advanced Materials Research 535-537 (juin 2012) : 1262–65. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1262.

Texte intégral
Résumé :
We have prepared the rubrene microparticles through a solvent evaporation process, during which the as-prepared microparticles were immobilized directly onto ITO electrode. It is found that the rubrene microparticles exhibit strong electrochemiluminescent emission in the presence of the co-reactant tripropylamine. The rubrene microparticles can be employed as an electrochemiluminescent sensor, chemically and biologically, for detection of methylene blue and glucose. This work demonstrates that the microstructured architecture of electroluminescent organic molecule is applicable as emitter in electrochemiluminescent sensor.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Shinashi, Kiyoaki, et Akira Uchida. « Rubrene endoperoxide acetone monosolvate ». Acta Crystallographica Section E Structure Reports Online 68, no 4 (10 mars 2012) : o995—o996. http://dx.doi.org/10.1107/s1600536812008835.

Texte intégral
Résumé :
The title acetone solvate, C42H28O2·C3H6O [systematic name: 1,3,10,12-tetraphenyl-19,20-dioxapentacyclo[10.6.2.02,11.04,9.013,18]icosa-2(11),3,5,7,9,13,15,17-octaene acetone monosolvate], is a photooxygenation product of rubrene (systematic name: 5,6,11,12-tetraphenyltetracene). The molecule bends at the bridgehead atoms, which are linked by the O—O transannular bond, with a dihedral angle of 49.21 (6)° between the benzene ring and the naphthalene ring system of the tetracene unit. In the crystal, the rubrene molecules are linked by C—H...O hydrogen bonds into a column along thecaxis. The acetone solvent molecules form a dimer around a crystallographic inversion centre through a carbonyl–carbonyl dipolar interaction. A C—H...O hydrogen bond between the rubrene and acetone molecules is also observed.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ribič, Primož Rebernik, et Gvido Bratina. « Ripening of Rubrene Islands ». Journal of Physical Chemistry C 111, no 50 (29 novembre 2007) : 18558–62. http://dx.doi.org/10.1021/jp077291j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhao, Lina, Xin Jiang, Jihui Lang, Wenlong Jiang, Gang Zhang, Chuang Xue, Liumenghan Zheng et Shuang Zhao. « The influence of the Rubrene thickness on the performance of white organic light-emitting devices ». Materials Express 10, no 3 (1 mars 2020) : 384–88. http://dx.doi.org/10.1166/mex.2020.1655.

Texte intégral
Résumé :
A group of white OLEDs (organic light-emitting devices), were fabricated using the blue yellow complementary principle. Among them, MCP(1,3-Bis(carbazol-9-yl)benzene) was used as the main material for the blue light layer, FIrPic(Bis(3,5-difluoro)-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III)) as the phosphorescent object material, and Rubrene(5,6,11,12-Tetraphenylnaphthacene) as the fluorescent material for the yellow light layer. The device structure is NPB(N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine) (20 nm)/Rubrene (0.5 nm)/MCP (3 nm)/MCP: FIrPic (30 nm, 10%)/Rubrene (z nm)/TPBi(1,3,5-Tris(1-phenyl-1Hbenzimidazol-2-yl) benzene)(10 nm)/Alq3(20 nm/LiF (0.6 nm)/Al (100 nm). By adjusting the thickness of Rubrene, the structure of the device was optimized and the performance of the device was improved. When the thickness of Rubrene was 0.5 nm, the performance of the device was the best, the maximum efficiency was 6.41 cd/A, the maximum luminance was 8344 cd/m2. When the driving voltage changed from 5 V to 14 V, the device changed from warm white light to cold white light.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Khan, Jafar I., Abdullah Saud Abbas, Shawkat M. Aly, Anwar Usman, Vasily A. Melnikov, Erkki Alarousu et Omar F. Mohammed. « Photoinduced energy and electron transfer in rubrene–benzoquinone and rubrene–porphyrin systems ». Chemical Physics Letters 616-617 (novembre 2014) : 237–42. http://dx.doi.org/10.1016/j.cplett.2014.10.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yabara, Yusuke, Seiichiro Izawa et Masahiro Hiramoto. « Donor/Acceptor Photovoltaic Cells Fabricated on p-Doped Organic Single-Crystal Substrates ». Materials 13, no 9 (30 avril 2020) : 2068. http://dx.doi.org/10.3390/ma13092068.

Texte intégral
Résumé :
In this study, the operation of donor/acceptor photovoltaic cells fabricated on homoepitaxially grown p-doped rubrene single-crystal substrates is demonstrated. The photocurrent density is dominated by the sheet conductivity (σ□) of the p-type single-crystal layer doped to 100 ppm with an iron chloride (Fe2Cl6) acceptor. A 65 μm thick p-type rubrene single-crystal substrate is expected to be required for a photocurrent density of 20 mA·cm−2. An entire bulk doping technique for rubrene single crystals is indispensable for the fabrication of practical organic single-crystal solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Liu, Hongyu, Wenbao Gao, Kaixia Yang, Baijun Chen, Shiyong Liu et Yubai Bai. « Effect of rubrene on characteristic of red organic electroluminescent device doped with rubrene ». Chemical Physics Letters 352, no 5-6 (février 2002) : 353–56. http://dx.doi.org/10.1016/s0009-2614(01)01467-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sinha, Sumona, et M. Mukherjee. « A comparative study about electronic structures at rubrene/Ag and Ag/rubrene interfaces ». AIP Advances 5, no 10 (octobre 2015) : 107204. http://dx.doi.org/10.1063/1.4933027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Huang, Chien-Jung, Kan-Lin Chen, Dei-Wei Chou, Yu-Chen Lee et Chih-Chieh Kang. « Enhancing Color Purity and Stable Efficiency of White Organic Light Diodes by Using Hole-Blocking Layer ». Journal of Nanomaterials 2014 (2014) : 1–6. http://dx.doi.org/10.1155/2014/915894.

Texte intégral
Résumé :
The organic light-emitting diodes with triple hole-blocking layer (THBL) formation sandwich structure which generate white emission were fabricated. The 5,6,11,12-tetraphenylnapthacene (Rubrene), (4,4′-N,N′-dicarbazole)biphenyl (CBP), and 4,4′-bis(2,2′diphenylvinil)-1,1′-biphenyl (DPVBi) were used as emitting materials in the device. The function of CBP layer is not only an emitting layer but also a hole-blocking layer (HBL), and the Rubrene was doped into the CBP. The optimal configuration structure was indium tin oxide (ITO)/Molybdenum trioxide (MoO3) (5 nm)/[4,4-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB) (35 nm)/CBP (HBL1) (5 nm)/DPVBi (I) (10 nm)/CBP (HBL2) : Rubrene (4 : 1) (3 nm)/DPVBi (II) (30 nm)/CBP (HBL3) (2 nm)/4,7-diphenyl-1,10-phenanthroline (BPhen) (10 nm)/Lithium fluoride (LiF)/aluminum (Al). The result showed that the device with Rubrene doped in CBP (HBL2) exhibited a stable white emission with the color coordinates of (0.322, 0.368), and the coordinate with the slight shift of±Δx,y= (0.001, 0.011) for applied voltage of 8–12 V was observed.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kim, Jae Joon, Hyeok Moo Lee, Ji Won Park et Sung Oh Cho. « Patterning of rubrene thin-film transistors based on electron irradiation of a polystyrene dielectric layer ». Journal of Materials Chemistry C 3, no 11 (2015) : 2650–55. http://dx.doi.org/10.1039/c4tc02731k.

Texte intégral
Résumé :
An unprecedented approach to pattern rubrene TFTs is presented by combining an abrupt heating method with selective electron irradiation of polystyrene dielectric layers. The patterned rubrene TFTs exhibited good performances with charge mobilities of ∼1.3 cm2V−1s−1and on/off ratios higher than 108.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Nakayama, Yasuo, Masaki Iwashita, Mitsuru Kikuchi, Ryohei Tsuruta, Koki Yoshida, Yuki Gunjo, Yusuke Yabara et al. « Electronic and Crystallographic Examinations of the Homoepitaxially Grown Rubrene Single Crystals ». Materials 13, no 8 (23 avril 2020) : 1978. http://dx.doi.org/10.3390/ma13081978.

Texte intégral
Résumé :
Homoepitaxial growth of organic semiconductor single crystals is a promising methodology toward the establishment of doping technology for organic opto-electronic applications. In this study, both electronic and crystallographic properties of homoepitaxially grown single crystals of rubrene were accurately examined. Undistorted lattice structures of homoepitaxial rubrene were confirmed by high-resolution analyses of grazing-incidence X-ray diffraction (GIXD) using synchrotron radiation. Upon bulk doping of acceptor molecules into the homoepitaxial single crystals of rubrene, highly sensitive photoelectron yield spectroscopy (PYS) measurements unveiled a transition of the electronic states, from induction of hole states at the valence band maximum at an adequate doping ratio (10 ppm), to disturbance of the valence band itself for excessive ratios (≥ 1000 ppm), probably due to the lattice distortion.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Seo, Soonjoo, Byoung-Nam Park et Paul G. Evans. « Ambipolar rubrene thin film transistors ». Applied Physics Letters 88, no 23 (5 juin 2006) : 232114. http://dx.doi.org/10.1063/1.2210294.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Shinashi, K., et I. Oonishi. « Photooxygenation of rubrene (5,6,11,12-tetraphenylnaphthacene) ». Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 août 2005) : c282. http://dx.doi.org/10.1107/s0108767305088008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kloc, C., K. J. Tan, M. L. Toh, K. K. Zhang et Y. P. Xu. « Purity of rubrene single crystals ». Applied Physics A 95, no 1 (30 décembre 2008) : 219–24. http://dx.doi.org/10.1007/s00339-008-5014-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhang, Gang, et Wen Long Jiang. « The Influence on the Organic Electroluminescent Device Performance with Different DPAVBi Position ». Applied Mechanics and Materials 333-335 (juillet 2013) : 1984–87. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.1984.

Texte intégral
Résumé :
We studied the influence on the organic electroluminescent device performance with different DPAVBi position. When DPAVBi was the separate blue light emitting layer and its thickness was 20 nm, the performance of the device is better than others. The yellow light device performance with DPAVBi behind the Rubrene layer is better than the device with it in front of Rubrene layer. The device has a maximum luminous 23560 cd/m2 at 17V and maximum efficiency 6.63cd/A at 16 V. We have received the blue-green light device with the Rubrene doped to DPAVBi. The maximum efficiency is 5.37 cd/A at 9 v and the maximum luminance is 6377 cd/m2 at 16 V. The efficiency drops slowly when the voltage increases. So, all the devices have the current weak fluorescence quenching.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jang, Ji-Geun, Ho-Jung Chang, Myung-Hwan Oh, Jung-Won Kang, Jun-Young Lee, Myoung-Seon Gong, Young-Kwan Lee et Hee-Won Kim. « Two Wavelength OLED with the Stacked GDI602(691)/GDI602(Rubrene) Fluorescent Layer ». Korean Journal of Materials Research 17, no 4 (27 avril 2007) : 198–202. http://dx.doi.org/10.3740/mrsk.2007.17.4.198.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Fedorovych, R., T. Gavrilko, Ya Lopatina, A. Marchenko, V. Nechytaylo, A. Senenko, L. Viduta et J. Baran. « Structure, Morphology, and Photoluminescence of Vacuum Deposited Rubrene Thin Layers ». Ukrainian Journal of Physics 61, no 6 (juin 2016) : 547–55. http://dx.doi.org/10.15407/ujpe61.06.0547.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Li, Wen, Michael Fronk, Hartmut Kupfer, Steffen Schulze, Michael Hietschold, Dietrich R. T. Zahn et Georgeta Salvan. « Aging of Rubrene Layers in Ni/Rubrene Heterostructures Studied by Magneto-Optical Kerr Effect Spectroscopy ». Journal of the American Chemical Society 132, no 16 (28 avril 2010) : 5687–92. http://dx.doi.org/10.1021/ja907728y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Seo, J. H., T. M. Pedersen, G. S. Chang, A. Moewes, K. H. Yoo, S. J. Cho et C. N. Whang. « Probing Interfacial Characteristics of Rubrene/Pentacene and Pentacene/Rubrene Bilayers with Soft X-Ray Spectroscopy ». Journal of Physical Chemistry B 111, no 32 (août 2007) : 9513–18. http://dx.doi.org/10.1021/jp070347p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Xu, Deng Hui, et Xiong Li. « Study on the Rubrene Emission Sensitized by a Phosphorescent Ir Compound in the Host of CBP ». Applied Mechanics and Materials 110-116 (octobre 2011) : 4512–17. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.4512.

Texte intégral
Résumé :
To obtain the maximum luminous efficiency from an organic material, it is necessary to harness both the spin-symmetric and anti-symmetric molecular excitations (bound electron–hole pairs, or excitons) that result from electrical pumping. Here, we demonstrate that this deficiency can be overcome by using a phosphorescent sensitizer to excite a fluorescent dye. The photoluminescence and sensitization effect between tris (2-phenylpyridine) iridium (Ir (ppy) 3) and 5,6,11,12-tetraphenylnaphthacene (rubrene) in the host of 4,4'-N,N-dicarbazole-biphenyl (CBP) were investigated. The energy transfer characteristics in the electroluminescent process of the system of CBP, Ir (ppy) 3 and Rubrene has been discuss in this article. The Ir (ppy) 3 sensitizer affords an effective way to improve the device performance. In the organic light-emitting diodes based on the Ir (ppy) 3, rubrene and CBP system, both the singlet and triplet excitons can be used.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Sánchez, Lucina G., Elizabeth N. Castillo, Hortensia Maldonado, Daniel Chávez, Ratnasamy Somanathan et Gerardo Aguirre. « Stereoselective Synthesis of Rubrenoic and nor‐Rubrenoic acids ». Synthetic Communications 38, no 1 (1 décembre 2007) : 54–71. http://dx.doi.org/10.1080/00397910701649049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Wen, Liang, Fu Shan Li et Tai Liang Guo. « White Organic Light-Emitting Diode Based on Organic Quantum Well Structure ». Materials Science Forum 694 (juillet 2011) : 645–49. http://dx.doi.org/10.4028/www.scientific.net/msf.694.645.

Texte intégral
Résumé :
A white organic light-emitting diode (WOLED) with an organic quantum well structure of ITO/N,N’-diphenyl-N,N’-bis(3-methylphenyl)-1,1’-biphenyl-4,4’-diamine (TPD) / 4,7-Diphenyl-1,10-phenanthroline (Bphen)/5,6,11,12-tetraphenylnapthacene (Rubrene)/Bphen /LiF/Al was fabricated by vacuum evaporation. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380nm to 700nm of the visible light region with a blue emission from TPD and an interesting wide emission peaked at 525nm, which can be decomposed into three emissions at 480nm, 525nm, and 555nm, respectively. The peaks at 525nm and 555nm are attributed to the excitation emission from the Bphen/Rubrene/Bphen quantum well structure, which are obviously blue-shifted in comparison with the photoluminescence (PL) spectrum of Rubrene. The new peak at 480nm is attributed to the exciplex emission at TPD/Bphen interface since it was also observed in the PL spectra. The white light of the WOLED comes from combined contribution of exciplex emission and organic quantum well structure.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fusella, Michael A., Frank Schreiber, Kevin Abbasi, Jae Joon Kim, Alejandro L. Briseno et Barry P. Rand. « Homoepitaxy of Crystalline Rubrene Thin Films ». Nano Letters 17, no 5 (12 avril 2017) : 3040–46. http://dx.doi.org/10.1021/acs.nanolett.7b00380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Li, Huihui Kong, Xing Song, Xiaoqing Liu et Hongming Wang. « Chiral supramolecular self-assembly of rubrene ». Physical Chemistry Chemical Physics 12, no 44 (2010) : 14682. http://dx.doi.org/10.1039/c0cp00512f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Campione, Marcello. « Rubrene Heteroepitaxial Nanostructures With Unique Orientation ». Journal of Physical Chemistry C 112, no 42 (25 septembre 2008) : 16178–81. http://dx.doi.org/10.1021/jp806877e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Konezny, S. J., M. N. Bussac et L. Zuppiroli. « Trap-limited transport in rubrene transistors ». Applied Physics Letters 95, no 26 (28 décembre 2009) : 263311. http://dx.doi.org/10.1063/1.3276693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Schuck, G., S. Haas, U. Berens et H. J. Kirner. « Crystal structures of two rubrene derivatives ». Acta Crystallographica Section A Foundations of Crystallography 63, a1 (22 août 2007) : s178. http://dx.doi.org/10.1107/s0108767307095979.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ding, Huanjun, et Yongli Gao. « Electronic structure at rubrene metal interfaces ». Applied Physics A 95, no 1 (13 janvier 2009) : 89–94. http://dx.doi.org/10.1007/s00339-008-5038-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jang, Ji-Geun. « Fabrication and Characterization of Red Emitting OLEDs using the Alg3:Rubrene-GDI4234 Phosphor System ». Journal of the Korean Institute of Electrical and Electronic Material Engineers 19, no 5 (1 mai 2006) : 437–41. http://dx.doi.org/10.4313/jkem.2006.19.5.437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hathwar, Venkatesha R., Mattia Sist, Mads R. V. Jørgensen, Aref H. Mamakhel, Xiaoping Wang, Christina M. Hoffmann, Kunihisa Sugimoto, Jacob Overgaard et Bo Brummerstedt Iversen. « Quantitative analysis of intermolecular interactions in orthorhombic rubrene ». IUCrJ 2, no 5 (14 août 2015) : 563–74. http://dx.doi.org/10.1107/s2052252515012130.

Texte intégral
Résumé :
Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπinteractions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI) analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Tsung-Lung, et Wen-Cai Lu. « Structural and electronic characteristics of intercalated monopotassium–rubrene : Simulation on a commodity computing cluster ». Journal of Theoretical and Computational Chemistry 15, no 04 (juin 2016) : 1650035. http://dx.doi.org/10.1142/s0219633616500358.

Texte intégral
Résumé :
The structural and electronic characteristics of the intercalated monopotassium–rubrene (K1Rub) are studied. In the intercalated K1Rub, one of the two pairs of phenyl groups of rubrene is intercalated by potassium, whereas the other pair remains pristine. This structural feature facilitates the comparison of the electronic structures of the intercalated and pristine pairs of phenyl groups. It is found that, in contrast to potassium adsorption to rubrene, the potassium intercalation promotes the carbon [Formula: see text] orbitals of the intercalated pair of phenyls to participate in the electronic structures of HOMO. Additionally, this intercalated K1Rub is used as a testing vehicle to study the performance of a commodity computing cluster built to run the General Atomic and Molecular Electronic Structure System (GAMESS) simulation package. It is shown that, for many frequently encountered simulation tasks, the performance of the commodity computing cluster is comparable with a massive computing cluster. The high performance-cost-ratio of the computing clusters constructed with commodity hardware suggests a feasible alternative for research institutes to establish their computing facilities.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Jhou, Yen-Wei, Chun-Kai Yang, Siang-Yu Sie, Hsiang-Chih Chiu et Jyh-Shen Tsay. « Variations of the elastic modulus perpendicular to the surface of rubrene bilayer films ». Physical Chemistry Chemical Physics 21, no 9 (2019) : 4939–46. http://dx.doi.org/10.1039/c8cp07062h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Ho, Chi-Chih, et Yu-Tai Tao. « Crystallization of rubrene on a nanopillar-templated surface by the melt-recrystallization process and its application in field-effect transistors ». Chemical Communications 51, no 3 (2015) : 603–6. http://dx.doi.org/10.1039/c4cc07739c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhang, Zhuoran, William A. Ogden, Victor G. Young et Christopher J. Douglas. « Synthesis, electrochemical properties, and crystal packing of perfluororubrene ». Chemical Communications 52, no 52 (2016) : 8127–30. http://dx.doi.org/10.1039/c6cc03259a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Zhang, Xiaotao, Yonggang Zhen, Xiaolong Fu, Jie Liu, Xiuqiang Lu, Ping He, Huanli Dong et al. « A thienyl peripherally substituted rubrene analogue with constant emissions and good film forming ability ». J. Mater. Chem. C 2, no 39 (2014) : 8222–25. http://dx.doi.org/10.1039/c4tc01356e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Karak, Supravat, Jung Ah Lim, Sunzida Ferdous, Volodimyr V. Duzhko et Alejandro L. Briseno. « Rubrene : Photovoltaic Effect at the Schottky Interface with Organic Single Crystal Rubrene (Adv. Funct. Mater. 8/2014) ». Advanced Functional Materials 24, no 8 (février 2014) : 1038. http://dx.doi.org/10.1002/adfm.201470049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Thompson, Robert J., Thomas Bennett, Sarah Fearn, Muhammad Kamaludin, Christian Kloc, David S. McPhail, Oleg Mitrofanov et Neil J. Curson. « Channels of oxygen diffusion in single crystal rubrene revealed ». Physical Chemistry Chemical Physics 18, no 47 (2016) : 32302–7. http://dx.doi.org/10.1039/c6cp05369f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gogoi, Deepshikha, Amreen A. Hussain, Sweety Biswasi et Arup R. Pal. « Crystalline rubrene via a novel process and realization of a pyro-phototronic device with a rubrene-based film ». Journal of Materials Chemistry C 8, no 19 (2020) : 6450–60. http://dx.doi.org/10.1039/d0tc00857e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie