Articles de revues sur le sujet « S-Acylation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « S-Acylation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Chamberlain, Luke H., and Michael J. Shipston. "The Physiology of Protein S-acylation." Physiological Reviews 95, no. 2 (2015): 341–76. http://dx.doi.org/10.1152/physrev.00032.2014.
Texte intégralShipston, Michael J. "Ion channel regulation by protein S-acylation." Journal of General Physiology 143, no. 6 (2014): 659–78. http://dx.doi.org/10.1085/jgp.201411176.
Texte intégralHemsley, Piers A. "S-acylation in plants: an expanding field." Biochemical Society Transactions 48, no. 2 (2020): 529–36. http://dx.doi.org/10.1042/bst20190703.
Texte intégralLocatelli, Carolina, Kimon Lemonidis, Christine Salaun, Nicholas C. O. Tomkinson, and Luke H. Chamberlain. "Identification of key features required for efficient S-acylation and plasma membrane targeting of sprouty-2." Journal of Cell Science 133, no. 21 (2020): jcs249664. http://dx.doi.org/10.1242/jcs.249664.
Texte intégralBAÑÓ, M. Carmen, S. Caroline JACKSON, and I. Anthony MAGEE. "Pseudo-enzymatic S-acylation of a myristoylated Yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo." Biochemical Journal 330, no. 2 (1998): 723–31. http://dx.doi.org/10.1042/bj3300723.
Texte intégralHines, P. J. "Location, location, S-acylation." Science 353, no. 6295 (2016): 133–34. http://dx.doi.org/10.1126/science.353.6295.133-f.
Texte intégralZheng, Lihua, Peng Liu, Qianwen Liu, Tao Wang, and Jiangli Dong. "Dynamic Protein S-Acylation in Plants." International Journal of Molecular Sciences 20, no. 3 (2019): 560. http://dx.doi.org/10.3390/ijms20030560.
Texte intégralLemonidis, Kimon, Oforiwa A. Gorleku, Maria C. Sanchez-Perez, Christopher Grefen, and Luke H. Chamberlain. "The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity." Molecular Biology of the Cell 25, no. 24 (2014): 3870–83. http://dx.doi.org/10.1091/mbc.e14-06-1169.
Texte intégralZhang, Lian, Karyn Foster, Qiuju Li, and Jeffrey R. Martens. "S-acylation regulates Kv1.5 channel surface expression." American Journal of Physiology-Cell Physiology 293, no. 1 (2007): C152—C161. http://dx.doi.org/10.1152/ajpcell.00480.2006.
Texte intégralSchroeder, H., R. Leventis, S. Shahinian, P. A. Walton, and J. R. Silvius. "Lipid-modified, cysteinyl-containing peptides of diverse structures are efficiently S-acylated at the plasma membrane of mammalian cells." Journal of Cell Biology 134, no. 3 (1996): 647–60. http://dx.doi.org/10.1083/jcb.134.3.647.
Texte intégralManhertz-Patterson, Rojae, and G. Ekin Atilla-Gokcumen. "S-acylation in apoptotic and non-apoptotic cell death: a central regulator of membrane dynamics and protein function." Biochemical Society Transactions 53, no. 02 (2025): 487–96. https://doi.org/10.1042/bst20253012.
Texte intégralJones, David, Uday Khandavilli, Eileen O’Leary, Simon Lawrence, and Timothy O’Sullivan. "Efficient S-Acylation of Thiourea." SynOpen 02, no. 04 (2018): 0263–67. http://dx.doi.org/10.1055/s-0037-1610370.
Texte intégralGreaves, Jennifer, and Luke H. Chamberlain. "S-acylation by the DHHC protein family." Biochemical Society Transactions 38, no. 2 (2010): 522–24. http://dx.doi.org/10.1042/bst0380522.
Texte intégralSalaun, Christine, Jennifer Greaves, Nicholas C. O. Tomkinson, and Luke H. Chamberlain. "The linker domain of the SNARE protein SNAP25 acts as a flexible molecular spacer that ensures efficient S-acylation." Journal of Biological Chemistry 295, no. 21 (2020): 7501–15. http://dx.doi.org/10.1074/jbc.ra120.012726.
Texte intégralLemonidis, Kimon, Christine Salaun, Marianna Kouskou, Cinta Diez-Ardanuy, Luke H. Chamberlain, and Jennifer Greaves. "Substrate selectivity in the zDHHC family of S-acyltransferases." Biochemical Society Transactions 45, no. 3 (2017): 751–58. http://dx.doi.org/10.1042/bst20160309.
Texte intégralKordyukova, Larisa V., Marina V. Serebryakova, Vladislav V. Khrustalev, and Michael Veit. "Differential S-acylation of Enveloped Viruses." Protein & Peptide Letters 26, no. 8 (2019): 588–600. http://dx.doi.org/10.2174/0929866526666190603082521.
Texte intégralHemsley, Piers A. "Protein S-acylation in plants (Review)." Molecular Membrane Biology 26, no. 1-2 (2009): 114–25. http://dx.doi.org/10.1080/09687680802680090.
Texte intégralRandall, Matthew J., Jennifer L. Ather, Laura R. Hoyt, Anne E. Dixon, and Matthew E. Poynter. "Protein S-Acylation in Pulmonary Disease." Free Radical Biology and Medicine 100 (November 2016): S193. http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.528.
Texte intégralPercher, Avital, Srinivasan Ramakrishnan, Emmanuelle Thinon, Xiaoqiu Yuan, Jacob S. Yount, and Howard C. Hang. "Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation." Proceedings of the National Academy of Sciences 113, no. 16 (2016): 4302–7. http://dx.doi.org/10.1073/pnas.1602244113.
Texte intégralPedro, Maria P., Aldo A. Vilcaes, Guillermo A. Gomez, and Jose L. Daniotti. "Individual S-acylated cysteines differentially contribute to H-Ras endomembrane trafficking and acylation/deacylation cycles." Molecular Biology of the Cell 28, no. 7 (2017): 962–74. http://dx.doi.org/10.1091/mbc.e16-08-0603.
Texte intégralGu, Si, Xinghua Nie, Amal George, et al. "Bioinformatics and Expression Profiling of the DHHC-CRD S-Acyltransferases Reveal Their Roles in Growth and Stress Response in Woodland Strawberry (Fragaria vesca)." Plants 14, no. 1 (2025): 127. https://doi.org/10.3390/plants14010127.
Texte intégralRana, Mitra S., Chul-Jin Lee, and Anirban Banerjee. "The molecular mechanism of DHHC protein acyltransferases." Biochemical Society Transactions 47, no. 1 (2018): 157–67. http://dx.doi.org/10.1042/bst20180429.
Texte intégralTicho, Alexander L., Pooja Malhotra, Christopher R. Manzella, et al. "S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells." Journal of Biological Chemistry 295, no. 14 (2020): 4488–97. http://dx.doi.org/10.1074/jbc.ra119.011032.
Texte intégralZmuda, Filip, and Luke H. Chamberlain. "Regulatory effects of post-translational modifications on zDHHC S-acyltransferases." Journal of Biological Chemistry 295, no. 43 (2020): 14640–52. http://dx.doi.org/10.1074/jbc.rev120.014717.
Texte intégralSalaun, Christine, Carolina Locatelli, Filip Zmuda, Juan Cabrera González, and Luke H. Chamberlain. "Accessory proteins of the zDHHC family of S-acylation enzymes." Journal of Cell Science 133, no. 22 (2020): jcs251819. http://dx.doi.org/10.1242/jcs.251819.
Texte intégralMahajan, Dinesh, Varun Kumar, Anil Rana, Chhuttan Lal Meena, Nidhi Sharma, and Yashwant Kumar. "Electrophilic Activation of Carboxylic Anhydrides for Nucleophilic Acylation Reactions." Synthesis 50, no. 19 (2018): 3902–10. http://dx.doi.org/10.1055/s-0037-1609564.
Texte intégralWest, Savannah J., Goutham Kodakandla, Qiaochu Wang, et al. "S-Acylation regulates store-operated calcium entry." Biophysical Journal 121, no. 3 (2022): 387a. http://dx.doi.org/10.1016/j.bpj.2021.11.828.
Texte intégralBirner-Gruenberger, Ruth, and Rolf Breinbauer. "Tracking Protein S-Fatty Acylation with Proteomics." ChemBioChem 17, no. 16 (2016): 1488–90. http://dx.doi.org/10.1002/cbic.201600314.
Texte intégralMotion, R. L., P. D. Buckley, A. F. Bennett, and L. F. Blackwell. "Evidence that the cytoplasmic aldehyde dehydrogenase-catalysed oxidation of aldehydes involves a different active-site group from that which catalyses the hydrolysis of 4-nitrophenyl acetate." Biochemical Journal 254, no. 3 (1988): 903–6. http://dx.doi.org/10.1042/bj2540903.
Texte intégralChumpen Ramirez, Sabrina, Fernando M. Ruggiero, Jose Luis Daniotti, and Javier Valdez Taubas. "Ganglioside glycosyltransferases are S-acylated at conserved cysteine residues involved in homodimerisation." Biochemical Journal 474, no. 16 (2017): 2803–16. http://dx.doi.org/10.1042/bcj20170124.
Texte intégralQiu, Tian, Saara-Anne Azizi, Shubhashree Pani, and Bryan C. Dickinson. "Abstract 1506: Protein acyl-protein thioesterases affect redox homeostasis and ROS signaling through peroxiredoxin." Cancer Research 85, no. 8_Supplement_1 (2025): 1506. https://doi.org/10.1158/1538-7445.am2025-1506.
Texte intégralGhosh, Santanu, Anisha Purkait, and Chandan K. Jana. "Environmentally benign decarboxylative N-, O-, and S-acetylations and acylations." Green Chemistry 22, no. 24 (2020): 8721–27. http://dx.doi.org/10.1039/d0gc03731a.
Texte intégralDaniotti, Jose L., Maria P. Pedro, and Javier Valdez Taubas. "The role of S-acylation in protein trafficking." Traffic 18, no. 11 (2017): 699–710. http://dx.doi.org/10.1111/tra.12510.
Texte intégralWest, Savannah J., Qiaochu Wang, Michael X. Zhu, Askar M. Akimzhanov, and Darren Boehning. "Regulation of Orai1/STIM1 Function by S-Acylation." Biophysical Journal 118, no. 3 (2020): 404a. http://dx.doi.org/10.1016/j.bpj.2019.11.2292.
Texte intégralAzizi, Saara-Anne, Tian Qiu, Noah E. Brookes, and Bryan C. Dickinson. "Regulation of ERK2 activity by dynamic S-acylation." Cell Reports 42, no. 9 (2023): 113135. http://dx.doi.org/10.1016/j.celrep.2023.113135.
Texte intégralZlatkine, P., B. Mehul, and A. I. Magee. "Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif." Journal of Cell Science 110, no. 5 (1997): 673–79. http://dx.doi.org/10.1242/jcs.110.5.673.
Texte intégraldel Rivero Morfin, Pedro J., and Manu Ben-Johny. "Cutting out the fat: Site-specific deacylation of an ion channel." Journal of Biological Chemistry 295, no. 49 (2020): 16497–98. http://dx.doi.org/10.1074/jbc.h120.016490.
Texte intégralVysyaraju, Ravikanth, Hanumantha Rao B., Subramanyeswara Rao I. V., Venkateswarlu J., Prasada Rao K. V. V., and Siddaiah V.*. "A Novel Process for the Preparation of [(R,S)/(S,R)] and [(S,S)/(R,R)] Chroman epoxides, Key Intermediates in the Synthesis of Nebivolol." International Journal of Bioassays 6, no. 06 (2017): 5420. http://dx.doi.org/10.21746/ijbio.2017.06.007.
Texte intégralLi, Yumeng, Shushu Wang, Yanchi Chen, et al. "Site-specific chemical fatty-acylation for gain-of-function analysis of protein S-palmitoylation in live cells." Chemical Communications 56, no. 89 (2020): 13880–83. http://dx.doi.org/10.1039/d0cc06073a.
Texte intégralChen, Baoen, Jixiao Niu, Johannes Kreuzer, et al. "Auto-fatty acylation of transcription factor RFX3 regulates ciliogenesis." Proceedings of the National Academy of Sciences 115, no. 36 (2018): E8403—E8412. http://dx.doi.org/10.1073/pnas.1800949115.
Texte intégralBARCLAY, Elaine, Mark O'REILLY та Graeme MILLIGAN. "Activation of an α2A-adrenoceptor–Gαo1 fusion protein dynamically regulates the palmitoylation status of the G protein but not of the receptor". Biochemical Journal 385, № 1 (2004): 197–206. http://dx.doi.org/10.1042/bj20041432.
Texte intégralStevenson, F. T., S. L. Bursten, R. M. Locksley, and D. H. Lovett. "Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues." Journal of Experimental Medicine 176, no. 4 (1992): 1053–62. http://dx.doi.org/10.1084/jem.176.4.1053.
Texte intégralPal, Mohan, and Stephen L. Bearne. "Synthesis of coenzyme A thioesters using methyl acyl phosphates in an aqueous medium." Org. Biomol. Chem. 12, no. 48 (2014): 9760–63. http://dx.doi.org/10.1039/c4ob02079k.
Texte intégralLutter, Ferdinand H., Lucie Grokenberger, Maximilian S. Hofmayer, and Paul Knochel. "Cobalt-catalyzed acylation-reactions of (hetero)arylzinc pivalates with thiopyridyl ester derivatives." Chemical Science 10, no. 35 (2019): 8241–45. http://dx.doi.org/10.1039/c9sc01817d.
Texte intégralKodakandla, Goutham, and Darren F. Boehning. "S-Acylation of STIM1 regulates store-operated calcium entry." Biophysical Journal 121, no. 3 (2022): 371a—372a. http://dx.doi.org/10.1016/j.bpj.2021.11.906.
Texte intégralKatritzky, Alan, Mohamed Ibrahim, Siva Panda, Linda Nhon, Ahmed Hamed, and Said El-Feky. "Macrocyclic Peptoids by Selective S-Acylation of Cysteine Esters." Synthesis 45, no. 06 (2013): 767–72. http://dx.doi.org/10.1055/s-0032-1318148.
Texte intégralKodakandla, Goutham, Michael X. Zhu, Askar M. Akimzhanov, and Darren F. Boehning. "S-acylation of SARAF regulates store-operated calcium entry." Biophysical Journal 122, no. 3 (2023): 373a—374a. http://dx.doi.org/10.1016/j.bpj.2022.11.2057.
Texte intégralSakai, Tatsuya, Reiko Ohuchi, and Masanobu Ohuchi. "Fatty Acids on the A/USSR/77 Influenza Virus Hemagglutinin Facilitate the Transition from Hemifusion to Fusion Pore Formation." Journal of Virology 76, no. 9 (2002): 4603–11. http://dx.doi.org/10.1128/jvi.76.9.4603-4611.2002.
Texte intégralPanina, Irina, Nikolay Krylov, Mohamed Rasheed Gadalla, et al. "Molecular Dynamics of DHHC20 Acyltransferase Suggests Principles of Lipid and Protein Substrate Selectivity." International Journal of Molecular Sciences 23, no. 9 (2022): 5091. http://dx.doi.org/10.3390/ijms23095091.
Texte intégralSklyarenko, A. V., I. A. Groshkova, I. N. Krestyanova, and S. V. Yarotsky. "Alternative Synthesis of Cefamandole with Biocatalytic Acylation Catalyzed by Immobilized Cephalosporin-Acid Synthetase." Applied Biochemistry and Microbiology 58, no. 3 (2022): 251–60. http://dx.doi.org/10.1134/s0003683822030127.
Texte intégral