Sommaire
Littérature scientifique sur le sujet « S-Fatty acylation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « S-Fatty acylation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "S-Fatty acylation"
Percher, Avital, Srinivasan Ramakrishnan, Emmanuelle Thinon, Xiaoqiu Yuan, Jacob S. Yount et Howard C. Hang. « Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation ». Proceedings of the National Academy of Sciences 113, no 16 (4 avril 2016) : 4302–7. http://dx.doi.org/10.1073/pnas.1602244113.
Texte intégralKordyukova, Larisa V., Marina V. Serebryakova, Vladislav V. Khrustalev et Michael Veit. « Differential S-acylation of Enveloped Viruses ». Protein & ; Peptide Letters 26, no 8 (11 septembre 2019) : 588–600. http://dx.doi.org/10.2174/0929866526666190603082521.
Texte intégralHemsley, Piers A. « S-acylation in plants : an expanding field ». Biochemical Society Transactions 48, no 2 (2 avril 2020) : 529–36. http://dx.doi.org/10.1042/bst20190703.
Texte intégralBirner-Gruenberger, Ruth, et Rolf Breinbauer. « Tracking Protein S-Fatty Acylation with Proteomics ». ChemBioChem 17, no 16 (8 juillet 2016) : 1488–90. http://dx.doi.org/10.1002/cbic.201600314.
Texte intégralManhertz-Patterson, Rojae, et G. Ekin Atilla-Gokcumen. « S-acylation in apoptotic and non-apoptotic cell death : a central regulator of membrane dynamics and protein function ». Biochemical Society Transactions 53, no 02 (avril 2025) : 487–96. https://doi.org/10.1042/bst20253012.
Texte intégralTicho, Alexander L., Pooja Malhotra, Christopher R. Manzella, Pradeep K. Dudeja, Seema Saksena, Ravinder K. Gill et Waddah A. Alrefai. « S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells ». Journal of Biological Chemistry 295, no 14 (18 février 2020) : 4488–97. http://dx.doi.org/10.1074/jbc.ra119.011032.
Texte intégralChen, Baoen, Jixiao Niu, Johannes Kreuzer, Baohui Zheng, Gopala K. Jarugumilli, Wilhelm Haas et Xu Wu. « Auto-fatty acylation of transcription factor RFX3 regulates ciliogenesis ». Proceedings of the National Academy of Sciences 115, no 36 (20 août 2018) : E8403—E8412. http://dx.doi.org/10.1073/pnas.1800949115.
Texte intégralLemonidis, Kimon, Oforiwa A. Gorleku, Maria C. Sanchez-Perez, Christopher Grefen et Luke H. Chamberlain. « The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity ». Molecular Biology of the Cell 25, no 24 (décembre 2014) : 3870–83. http://dx.doi.org/10.1091/mbc.e14-06-1169.
Texte intégralShipston, Michael J. « Ion channel regulation by protein S-acylation ». Journal of General Physiology 143, no 6 (12 mai 2014) : 659–78. http://dx.doi.org/10.1085/jgp.201411176.
Texte intégralLi, Yumeng, Shushu Wang, Yanchi Chen, Manjia Li, Xiaoshu Dong, Howard C. Hang et Tao Peng. « Site-specific chemical fatty-acylation for gain-of-function analysis of protein S-palmitoylation in live cells ». Chemical Communications 56, no 89 (2020) : 13880–83. http://dx.doi.org/10.1039/d0cc06073a.
Texte intégralThèses sur le sujet "S-Fatty acylation"
Freyermuth, Chloé. « Approches de chémobiologie pour quantifier la S-acylation des protéines ». Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0029.
Texte intégralS-acylation is a post-translational modification of proteins involving the covalent attachment of a fatty acid to cysteine residues. This addition of a hydrophobic moiety can alter the protein localisation, and can also affect their structure and/or stability. The reversibility and dynamism of this enzymatic modification enable it to play a regulatory role in cellular processes, with involvement in various biological functions. Aberrant S-acylation has been linked to a variety of human diseases, including cancers or neurodegenerative diseases. Existing proteomics methods are mostly based on relative quantification of the S-acylation of proteins. Tools to precisely quantify changes in S-acylation levels of each cysteine residue are noticeably lacking. This thesis project focuses on the development of a method to quantify the S-acylation levels of cysteine residues in a single proteome sample. The method relies on the sequential and differential labelling of free cysteines and S-acylated cysteines using a pair of isotopically-tagged chemical probes. The probes have identical structures, each composed of a cysteine-reactive electrophile and an alkyne handle, with a mass difference introduced by light and heavy isotopes (“light” probe (12C, 14N) and “heavy” probe (13C, 15N)). The labelled cysteines are then coupled by click reaction to an azide-capture reagent bearing a biotin moiety. Following tryptic digestion, cysteine-containing peptides are enriched using NeutrAvidin beads, and the eluted labelled peptides are analysed by LC-MS/MS. MS analysis provides heavy-to-light ratios for each labelled cysteine within a single proteome sample, which reveals the percentage of S-acylation of the cysteines. The chemical tools were synthesised and the workflow was developed with the selection of protein treatments’ parameters using qualitative analysis approaches (e.g., Western blotting). Proteomics analyses allowed further refinement of key variables, including the combination of probes and capture reagents, the LC-MS/MS analysis parameters, and the downstream data processing to calculate the S-acylation percentages. The method was successfully applied to detect changes in S-acylation levels upon an external stimulus, providing new insights into associated signalling pathways and biological processes. Optimisations of the workflow will be pursued, notably by comparing new probes and automating the pipeline. We anticipate that the developed method will have broad applications for studying the S-acylation levels of cysteine residues and their role in different pathologies, potentially revealing innovative treatments
Actes de conférences sur le sujet "S-Fatty acylation"
Purdon, A. D., et J. B. Smith. « RELEASE AND TRANSACYLATION OF ARACHIDONATE FROM A COMMON POOL OF 1-ACYL-2-ARACHIDONOYL GLYCEROPHOSPHOCHOLINE IN HUMAN PLATELETS ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643391.
Texte intégral