Articles de revues sur le sujet « Saccharomyces cerevisiae, healthy aging »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Saccharomyces cerevisiae, healthy aging ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Alugoju, Phaniendra, Chella Perumal Palanisamy, Naga Venkata Anusha Anthikapalli, et al. "Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review." F1000Research 12 (December 17, 2024): 1265. https://doi.org/10.12688/f1000research.141669.2.
Texte intégralSu, Wei-Hsuan, Omar Ocegueda, Catherine Choi, et al. "SPERMIDINE TOXICITY IN MITOCHONDRIAL DNA-DEFICIENT SACCHAROMYCES CEREVISIAE." Innovation in Aging 6, Supplement_1 (2022): 444–45. http://dx.doi.org/10.1093/geroni/igac059.1740.
Texte intégralBegum, Farhana, Jaroslav Kristof, Md Jahangir Alam, et al. "Exploring the Role of Microplasma for Controlling Cellular Senescence in Saccharomyces cerevisiae." Molecules 30, no. 9 (2025): 1970. https://doi.org/10.3390/molecules30091970.
Texte intégralOgita, Akira, Wakae Murata, Marina Hasegawa, et al. "PROLONGATION OF HUMAN LIFESPAN BY IMMATURE PEAR EXTRACT MEDIATED SIRTUIN-RELATED GENE EXPRESSION." Innovation in Aging 3, Supplement_1 (2019): S97. http://dx.doi.org/10.1093/geroni/igz038.365.
Texte intégralSu, Wei-Hsuan, Jessica Smith, Evien Cheng, and Samuel Schriner. "EXPRESSION OF THE TARDIGRADE DAMAGE SUPPRESSOR PROTEIN IN THE YEAST SACCHAROMYCES CEREVISIAE." Innovation in Aging 7, Supplement_1 (2023): 770. http://dx.doi.org/10.1093/geroni/igad104.2489.
Texte intégralKaya, Alaattin. "EVIDENCE THAT CONSERVED ESSENTIAL GENES ARE ENRICHED FOR PRO-LONGEVITY FACTORS." Innovation in Aging 7, Supplement_1 (2023): 769–70. http://dx.doi.org/10.1093/geroni/igad104.2487.
Texte intégralKitanovic, Ana, and Stefan Wölfl. "Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 594, no. 1-2 (2006): 135–47. http://dx.doi.org/10.1016/j.mrfmmm.2005.08.005.
Texte intégralRomano, Patrizia, Giacomo Braschi, Gabriella Siesto, Francesca Patrignani, and Rosalba Lanciotti. "Role of Yeasts on the Sensory Component of Wines." Foods 11, no. 13 (2022): 1921. http://dx.doi.org/10.3390/foods11131921.
Texte intégralShalamitskiy, Maksim Yu, Tatiana N. Tanashchuk, Sofia N. Cherviak, Egor A. Vasyagin, Nikolai V. Ravin, and Andrey V. Mardanov. "Ethyl Carbamate in Fermented Food Products: Sources of Appearance, Hazards and Methods for Reducing Its Content." Foods 12, no. 20 (2023): 3816. http://dx.doi.org/10.3390/foods12203816.
Texte intégralLiu, Gang, Lei Yu, Yordan Martínez, et al. "Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3967439.
Texte intégralMołoń, Mateusz, Karolina Stępień, Patrycja Kielar, et al. "Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing." Cells 11, no. 17 (2022): 2754. http://dx.doi.org/10.3390/cells11172754.
Texte intégralLewis, Kim. "Programmed Death in Bacteria." Microbiology and Molecular Biology Reviews 64, no. 3 (2000): 503–14. http://dx.doi.org/10.1128/mmbr.64.3.503-514.2000.
Texte intégralMarangon, Matteo, Poppy Seeley, Erica Barocci, et al. "Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines." Foods 12, no. 10 (2023): 1995. http://dx.doi.org/10.3390/foods12101995.
Texte intégralHolbrook, M. A., and J. R. Menninger. "Erythromycin Slows Aging of Saccharomyces cerevisiae." Journals of Gerontology Series A: Biological Sciences and Medical Sciences 57, no. 1 (2002): B29—B36. http://dx.doi.org/10.1093/gerona/57.1.b29.
Texte intégralKennedy, Brian K., and Leonard Guarente. "Genetic analysis of aging in Saccharomyces cerevisiae." Trends in Genetics 12, no. 9 (1996): 355–59. http://dx.doi.org/10.1016/s0168-9525(96)80018-7.
Texte intégralCohen, Aviv, Esther Weindling, Efrat Rabinovich, et al. "Water-Transfer Slows Aging in Saccharomyces cerevisiae." PLOS ONE 11, no. 2 (2016): e0148650. http://dx.doi.org/10.1371/journal.pone.0148650.
Texte intégralLongo, Valter D., Gerald S. Shadel, Matt Kaeberlein, and Brian Kennedy. "Replicative and Chronological Aging in Saccharomyces cerevisiae." Cell Metabolism 16, no. 1 (2012): 18–31. http://dx.doi.org/10.1016/j.cmet.2012.06.002.
Texte intégralPeters, Theodore W., Matthew J. Rardin, Gregg Czerwieniec, et al. "Tor1 regulates protein solubility in Saccharomyces cerevisiae." Molecular Biology of the Cell 23, no. 24 (2012): 4679–88. http://dx.doi.org/10.1091/mbc.e12-08-0620.
Texte intégralD'Mello, N. P., and S. M. Jazwinski. "Telomere length constancy during aging of Saccharomyces cerevisiae." Journal of Bacteriology 173, no. 21 (1991): 6709–13. http://dx.doi.org/10.1128/jb.173.21.6709-6713.1991.
Texte intégralChen, Xiao-Fen, Fei-Long Meng, and Jin-Qiu Zhou. "Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae." PLoS Genetics 5, no. 6 (2009): e1000535. http://dx.doi.org/10.1371/journal.pgen.1000535.
Texte intégralBlomme, Arnaud, Allan Mac'Cord, Francis E. Sluse, and Gregory Mathy. "Proteomic evolution of Saccharomyces cerevisiae during chronological aging." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797 (July 2010): 58. http://dx.doi.org/10.1016/j.bbabio.2010.04.189.
Texte intégralSetiyoningrum, F., G. Priadi, and F. Afiati. "Chemical properties of solo black garlic fermented by Saccharomyces cerevisiae." IOP Conference Series: Earth and Environmental Science 976, no. 1 (2022): 012044. http://dx.doi.org/10.1088/1755-1315/976/1/012044.
Texte intégralVelenosi, Matteo, Pasquale Crupi, Rocco Perniola, et al. "Color Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae." Molecules 26, no. 4 (2021): 907. http://dx.doi.org/10.3390/molecules26040907.
Texte intégralJazwinski, S. M. "Aging and senescence of the budding yeast Saccharomyces cerevisiae." Molecular Microbiology 4, no. 3 (1990): 337–43. http://dx.doi.org/10.1111/j.1365-2958.1990.tb00601.x.
Texte intégralBitterman, Kevin J., Oliver Medvedik, and David A. Sinclair. "Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin." Microbiology and Molecular Biology Reviews 67, no. 3 (2003): 376–99. http://dx.doi.org/10.1128/mmbr.67.3.376-399.2003.
Texte intégralBenetti, Fábia, Thanise Antunes Dias, Jorge Alberto Vieira Costa, and Telma Elita Bertolin. "Caloric restriction and Spirulina platensis extract against ferrous ion (Fe2+) in the aging of Saccharomyces cerevisiae cells deleted to the SIR2 gene." Research, Society and Development 9, no. 8 (2020): e662986210. http://dx.doi.org/10.33448/rsd-v9i8.6210.
Texte intégralNasuti, Chiara, Jennifer Ruffini, Laura Sola, et al. "Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures." Microorganisms 11, no. 9 (2023): 2138. http://dx.doi.org/10.3390/microorganisms11092138.
Texte intégralKirchman, Paul A., Sangkyu Kim, Chi-Yung Lai, and S. Michal Jazwinski. "Interorganelle Signaling Is a Determinant of Longevity in Saccharomyces cerevisiae." Genetics 152, no. 1 (1999): 179–90. http://dx.doi.org/10.1093/genetics/152.1.179.
Texte intégralMcCleary, David F., and Jasper Rine. "Nutritional Control of Chronological Aging and Heterochromatin in Saccharomyces cerevisiae." Genetics 205, no. 3 (2017): 1179–93. http://dx.doi.org/10.1534/genetics.116.196485.
Texte intégralSorokin, Maksim, Dmitry Knorre, and Fedor Severin. "Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae." Microbial Cell 1, no. 1 (2014): 37–42. http://dx.doi.org/10.15698/mic2014.01.122.
Texte intégralYiu, G., A. McCord, A. Wise, et al. "Pathways Change in Expression During Replicative Aging in Saccharomyces cerevisiae." Journals of Gerontology Series A: Biological Sciences and Medical Sciences 63, no. 1 (2008): 21–34. http://dx.doi.org/10.1093/gerona/63.1.21.
Texte intégralAshrafi, K., D. Sinclair, J. I. Gordon, and L. Guarente. "Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences 96, no. 16 (1999): 9100–9105. http://dx.doi.org/10.1073/pnas.96.16.9100.
Texte intégralMacCord, Allan, Gregory Mathy, Pierre Leprince, Edwin de Pauw, and Francis E. Sluse. "S14.7 Impact of chronological aging on mitoproteome of Saccharomyces cerevisiae." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777 (July 2008): S101. http://dx.doi.org/10.1016/j.bbabio.2008.05.395.
Texte intégralBiliński, Tomasz, and Grzegorz Bartosz. "Hypothesis: cell volume limits cell divisions." Acta Biochimica Polonica 53, no. 4 (2006): 833–35. http://dx.doi.org/10.18388/abp.2006_3313.
Texte intégralWang, Shaoyu. "Leveraging budding yeast Saccharomyces cerevisiae for discovering aging modulation substances for functional food." Functional Foods in Health and Disease 9, no. 5 (2019): 297. http://dx.doi.org/10.31989/ffhd.v9i5.575.
Texte intégralFabrizio, Paola, Luisa Battistella, Raffaello Vardavas, et al. "Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae." Journal of Cell Biology 166, no. 7 (2004): 1055–67. http://dx.doi.org/10.1083/jcb.200404002.
Texte intégralHwang, Hye-Seon, Kwang-Rim Baek, and Seung-Oh Seo. "Retinal Production by Precision Fermentation of Saccharomyces cerevisiae." Fermentation 11, no. 4 (2025): 214. https://doi.org/10.3390/fermentation11040214.
Texte intégralStępień, Karolina, Dominik Wojdyła, Katarzyna Nowak, and Mateusz Mołoń. "Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast." Biogerontology 21, no. 1 (2019): 109–23. http://dx.doi.org/10.1007/s10522-019-09846-x.
Texte intégralAlugoju, Phaniendra, Chella Perumal Palanisamy, Naga Venkata Anusha Anthikapalli, et al. "Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review." F1000Research 12 (October 4, 2023): 1265. http://dx.doi.org/10.12688/f1000research.141669.1.
Texte intégralArlia-Ciommo, Anthony, Anna Leonov, Amanda Piano, Veronika Svistkova, and Vladimir Titorenko. "Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae." Microbial Cell 1, no. 6 (2014): 163–78. http://dx.doi.org/10.15698/mic2014.06.152.
Texte intégralLefevre, Sophie D., Carlo W. Roermund, Ronald J. A. Wanders, Marten Veenhuis, and Ida J. Klei. "The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae." Aging Cell 12, no. 5 (2013): 784–93. http://dx.doi.org/10.1111/acel.12113.
Texte intégralKaya, Alaattin, Alexei V. Lobanov, and Vadim N. Gladyshev. "Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae." Aging Cell 14, no. 3 (2015): 366–71. http://dx.doi.org/10.1111/acel.12290.
Texte intégralvan der Laan, Kiran J., Julie Naulleau, Viraj G. Damle, et al. "Toward Using Fluorescent Nanodiamonds To Study Chronological Aging in Saccharomyces cerevisiae." Analytical Chemistry 90, no. 22 (2018): 13506–13. http://dx.doi.org/10.1021/acs.analchem.8b03431.
Texte intégralManshin, Dmitrii, Maria Kuntsova, Alexey Shilenko, and Anastasia Andreeva. "Probiotic yeast <i>Saccharomyces cerevisiae var. boulardii</i>: properties and peculiarities of use in functional foods development." Functional Foods in Health and Disease 15, no. 5 (2025): 296–315. https://doi.org/10.31989/ffhd.v15i5.1482.
Texte intégralHa, Cheol Woong, and Won-Ki Huh. "The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae." Aging 3, no. 3 (2011): 319–24. http://dx.doi.org/10.18632/aging.100299.
Texte intégralBarbero-Úriz, Óscar, Marta Valenti, María Molina, Teresa Fernández-Acero, and Víctor J. Cid. "Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae." Biomolecules 15, no. 4 (2025): 530. https://doi.org/10.3390/biom15040530.
Texte intégralBhattacharya, Somanon, Tejas Bouklas, and Bettina C. Fries. "Replicative Aging in Pathogenic Fungi." Journal of Fungi 7, no. 1 (2020): 6. http://dx.doi.org/10.3390/jof7010006.
Texte intégralYuan, Yuan, Jia-ying Lin, Hong-jing Cui, et al. "PCK1 Deficiency Shortens the Replicative Lifespan of Saccharomyces cerevisiae through Upregulation of PFK1." BioMed Research International 2020 (February 12, 2020): 1–10. http://dx.doi.org/10.1155/2020/3858465.
Texte intégralKhandaker, AM, and A. Koc. "Deletion of mitochondrial inorganic pyrophosphatase gene extends life span in haploid yeast (Saccharomyces cerevisiae)." Journal of Biodiversity Conservation and Bioresource Management 3, no. 2 (2018): 69–76. http://dx.doi.org/10.3329/jbcbm.v3i2.36030.
Texte intégralTakeda, Ryuji, Norio Kanesugi, Michiyo Kanesugi, Syukuko Ebihara, and Shigeru Imai. "Effects of Saccharomyces cerevisiae NK-1 on stool frequency and volume in healthy individuals with infrequent bowel movements: a randomized, placebo, placebo controlled, double-blind study." Functional Foods in Health and Disease 8, no. 9 (2018): 462. http://dx.doi.org/10.31989/ffhd.v8i9.545.
Texte intégral