Articles de revues sur le sujet « Saccharomyces cerevisiae Signal Transduction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Saccharomyces cerevisiae Signal Transduction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Portela, P., and Silvia Rossi. "cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae." Current Genetics 66, no. 6 (2020): 1093–99. http://dx.doi.org/10.1007/s00294-020-01107-6.
Texte intégralOehlen, Bert, and Frederick R. Cross. "Signal transduction in the budding yeast Saccharomyces cerevisiae." Current Opinion in Cell Biology 6, no. 6 (1994): 836–41. http://dx.doi.org/10.1016/0955-0674(94)90053-1.
Texte intégralPan, Xuewen, Toshiaki Harashima, and Joseph Heitman. "Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae." Current Opinion in Microbiology 3, no. 6 (2000): 567–72. http://dx.doi.org/10.1016/s1369-5274(00)00142-9.
Texte intégralMagasanik, B. "The transduction of the nitrogen regulation signal in Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences 102, no. 46 (2005): 16537–38. http://dx.doi.org/10.1073/pnas.0507116102.
Texte intégralKaniak, Aneta, Zhixiong Xue, Daniel Macool, Jeong-Ho Kim, and Mark Johnston. "Regulatory Network Connecting Two Glucose Signal Transduction Pathways in Saccharomyces cerevisiae." Eukaryotic Cell 3, no. 1 (2004): 221–31. http://dx.doi.org/10.1128/ec.3.1.221-231.2004.
Texte intégralChoi, You-Jeong, Sun-Hong Kim, Ki-Sook Park, and Kang-Yell Choi. "Differential transmission of G1 cell cycle arrest and mating signals by Saccharomyces cerevisiae Ste5 mutants in the pheromone pathway." Biochemistry and Cell Biology 77, no. 5 (1999): 459–68. http://dx.doi.org/10.1139/o99-054.
Texte intégralMoskow, John J., Amy S. Gladfelter, Rachel E. Lamson, Peter M. Pryciak, and Daniel J. Lew. "Role of Cdc42p in Pheromone-Stimulated Signal Transduction in Saccharomyces cerevisiae." Molecular and Cellular Biology 20, no. 20 (2000): 7559–71. http://dx.doi.org/10.1128/mcb.20.20.7559-7571.2000.
Texte intégralSantangelo, George M. "Glucose Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 70, no. 1 (2006): 253–82. http://dx.doi.org/10.1128/mmbr.70.1.253-282.2006.
Texte intégralLengeler, Klaus B., Robert C. Davidson, Cletus D'souza, et al. "Signal Transduction Cascades Regulating Fungal Development and Virulence." Microbiology and Molecular Biology Reviews 64, no. 4 (2000): 746–85. http://dx.doi.org/10.1128/mmbr.64.4.746-785.2000.
Texte intégralXu, Gang, Gregor Jansen, David Y. Thomas, Cornelis P. Hollenberg, and Massoud Ramezani Rad. "Ste50p sustains mating pheromone-induced signal transduction in the yeast Saccharomyces cerevisiae." Molecular Microbiology 20, no. 4 (1996): 773–83. http://dx.doi.org/10.1111/j.1365-2958.1996.tb02516.x.
Texte intégralBROACH, J. "RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway." Trends in Genetics 7, no. 1 (1991): 28–33. http://dx.doi.org/10.1016/0168-9525(91)90018-l.
Texte intégralLoomis, W. F., G. Shaulsky, and N. Wang. "Histidine kinases in signal transduction pathways of eukaryotes." Journal of Cell Science 110, no. 10 (1997): 1141–45. http://dx.doi.org/10.1242/jcs.110.10.1141.
Texte intégralAlepuz, Paula M., Dina Matheos, Kyle W. Cunningham, and Francisco Estruch. "The Saccharomyces cerevisiae RanGTP-Binding Protein Msn5p Is Involved in Different Signal Transduction Pathways." Genetics 153, no. 3 (1999): 1219–31. http://dx.doi.org/10.1093/genetics/153.3.1219.
Texte intégralGomez, Shawn M., Shaw-Hwa Lo, and Andrey Rzhetsky. "Probabilistic Prediction of Unknown Metabolic and Signal-Transduction Networks." Genetics 159, no. 3 (2001): 1291–98. http://dx.doi.org/10.1093/genetics/159.3.1291.
Texte intégralBrill, J. A., E. A. Elion, and G. R. Fink. "A role for autophosphorylation revealed by activated alleles of FUS3, the yeast MAP kinase homolog." Molecular Biology of the Cell 5, no. 3 (1994): 297–312. http://dx.doi.org/10.1091/mbc.5.3.297.
Texte intégralLevin, David E. "Cell Wall Integrity Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 69, no. 2 (2005): 262–91. http://dx.doi.org/10.1128/mmbr.69.2.262-291.2005.
Texte intégralLu, Jade Mei-Yeh, Robert J. Deschenes, and Jan S. Fassler. "Role for the Ran Binding Protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 Signal Transduction." Eukaryotic Cell 3, no. 6 (2004): 1544–56. http://dx.doi.org/10.1128/ec.3.6.1544-1556.2004.
Texte intégralCole, G. M., D. E. Stone, and S. I. Reed. "Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway." Molecular and Cellular Biology 10, no. 2 (1990): 510–17. http://dx.doi.org/10.1128/mcb.10.2.510.
Texte intégralCole, G. M., D. E. Stone, and S. I. Reed. "Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway." Molecular and Cellular Biology 10, no. 2 (1990): 510–17. http://dx.doi.org/10.1128/mcb.10.2.510-517.1990.
Texte intégralCosta, V. "Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases." Molecular Aspects of Medicine 22, no. 4-5 (2001): 217–46. http://dx.doi.org/10.1016/s0098-2997(01)00012-7.
Texte intégralGartner, A., K. Nasmyth, and G. Ammerer. "Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1." Genes & Development 6, no. 7 (1992): 1280–92. http://dx.doi.org/10.1101/gad.6.7.1280.
Texte intégralVaseghi, Sam, Franz Macherhammer, Susanne Zibek, and Matthias Reuss. "Signal Transduction Dynamics of the Protein Kinase-A/Phosphofructokinase-2 System in Saccharomyces cerevisiae." Metabolic Engineering 3, no. 2 (2001): 163–72. http://dx.doi.org/10.1006/mben.2000.0179.
Texte intégralSitcheran, Raquel, Roger Emter, Anastasia Kralli, and Keith R. Yamamoto. "A Genetic Analysis of Glucocorticoid Receptor Signaling: Identification and Characterization of Ligand-Effect Modulators in Saccharomyces cerevisiae." Genetics 156, no. 3 (2000): 963–72. http://dx.doi.org/10.1093/genetics/156.3.963.
Texte intégralJohnston, M., and J. H. Kim. "Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae." Biochemical Society Transactions 33, no. 1 (2005): 247–52. http://dx.doi.org/10.1042/bst0330247.
Texte intégralLau, W.-T. Walter, Ken R. Schneider, and Erin K. O’Shea. "A Genetic Study of Signaling Processes for Repression of PHO5 Transcription in Saccharomyces cerevisiae." Genetics 150, no. 4 (1998): 1349–59. http://dx.doi.org/10.1093/genetics/150.4.1349.
Texte intégralKim, Jeong-Ho, Valérie Brachet, Hisao Moriya, and Mark Johnston. "Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae." Eukaryotic Cell 5, no. 1 (2006): 167–73. http://dx.doi.org/10.1128/ec.5.1.167-173.2006.
Texte intégralWhiteway, M., L. Hougan, D. Dignard, et al. "Function of the STE4 and STE18 Genes in Mating Pheromone Signal Transduction in Saccharomyces cerevisiae." Cold Spring Harbor Symposia on Quantitative Biology 53 (January 1, 1988): 585–90. http://dx.doi.org/10.1101/sqb.1988.053.01.067.
Texte intégralNishimura, Hiroshi, Yuko Kawasaki, Kazuto Nosaka, and Yoshinobu Kaneko. "Mutation thi81 causing a deficiency in the signal transduction of thiamine pyrophosphate in Saccharomyces cerevisiae." FEMS Microbiology Letters 156, no. 2 (2006): 245–49. http://dx.doi.org/10.1111/j.1574-6968.1997.tb12735.x.
Texte intégralSuzuki-Fujimoto, T., M. Fukuma, K. I. Yano, et al. "Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p." Molecular and Cellular Biology 16, no. 5 (1996): 2504–8. http://dx.doi.org/10.1128/mcb.16.5.2504.
Texte intégralLiang, H., and R. F. Gaber. "A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6." Molecular Biology of the Cell 7, no. 12 (1996): 1953–66. http://dx.doi.org/10.1091/mbc.7.12.1953.
Texte intégralZhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede. "Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases." Molecular and Cellular Biology 13, no. 4 (1993): 2069–80. http://dx.doi.org/10.1128/mcb.13.4.2069.
Texte intégralBhat, P. J., D. Oh, and J. E. Hopper. "Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae." Genetics 125, no. 2 (1990): 281–91. http://dx.doi.org/10.1093/genetics/125.2.281.
Texte intégralZhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede. "Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases." Molecular and Cellular Biology 13, no. 4 (1993): 2069–80. http://dx.doi.org/10.1128/mcb.13.4.2069-2080.1993.
Texte intégralHolley, S. J., and K. R. Yamamoto. "A role for Hsp90 in retinoid receptor signal transduction." Molecular Biology of the Cell 6, no. 12 (1995): 1833–42. http://dx.doi.org/10.1091/mbc.6.12.1833.
Texte intégralWhiteway, Malcolm, Daniel Dignard та David Y. Thomas. "Mutagenesis of Ste18, a putative Gγ subunit in the Saccharomyces cerevisiae pheromone response pathway". Biochemistry and Cell Biology 70, № 10-11 (1992): 1230–37. http://dx.doi.org/10.1139/o92-169.
Texte intégralCutler, N. Shane, Xuewen Pan, Joseph Heitman, and Maria E. Cardenas. "The TOR Signal Transduction Cascade Controls Cellular Differentiation in Response to Nutrients." Molecular Biology of the Cell 12, no. 12 (2001): 4103–13. http://dx.doi.org/10.1091/mbc.12.12.4103.
Texte intégralGerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, no. 3 (1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248.
Texte intégralGerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, no. 3 (1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248-1257.1991.
Texte intégralYashar, B., K. Irie, J. A. Printen, et al. "Yeast MEK-dependent signal transduction: response thresholds and parameters affecting fidelity." Molecular and Cellular Biology 15, no. 12 (1995): 6545–53. http://dx.doi.org/10.1128/mcb.15.12.6545.
Texte intégralNeiman, A. M., B. J. Stevenson, H. P. Xu, et al. "Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms." Molecular Biology of the Cell 4, no. 1 (1993): 107–20. http://dx.doi.org/10.1091/mbc.4.1.107.
Texte intégralFujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, no. 1 (1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152.
Texte intégralFujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, no. 1 (1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152-158.1989.
Texte intégralHenry, Theresa C., Juliette E. Power, Christine L. Kerwin, et al. "Systematic Screen of Schizosaccharomyces pombe Deletion Collection Uncovers Parallel Evolution of the Phosphate Signal Transduction Pathway in Yeasts." Eukaryotic Cell 10, no. 2 (2010): 198–206. http://dx.doi.org/10.1128/ec.00216-10.
Texte intégralHorecka, Joe, and George F. Sprague. "Identification and Characterization of FAR3, a Gene Required for Pheromone-Mediated G1 Arrest in Saccharomyces cerevisiae." Genetics 144, no. 3 (1996): 905–21. http://dx.doi.org/10.1093/genetics/144.3.905.
Texte intégralStyrkársdóttir, Unnur, Richard Egel, and Olaf Nielsen. "Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction." Molecular and General Genetics MGG 235, no. 1 (1992): 122–30. http://dx.doi.org/10.1007/bf00286189.
Texte intégralSadhu, C., D. Hoekstra, M. J. McEachern, S. I. Reed, and J. B. Hicks. "A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor." Molecular and Cellular Biology 12, no. 5 (1992): 1977–85. http://dx.doi.org/10.1128/mcb.12.5.1977.
Texte intégralSadhu, C., D. Hoekstra, M. J. McEachern, S. I. Reed, and J. B. Hicks. "A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor." Molecular and Cellular Biology 12, no. 5 (1992): 1977–85. http://dx.doi.org/10.1128/mcb.12.5.1977-1985.1992.
Texte intégralBiswas, Subhrajit, Patrick Van Dijck, and Asis Datta. "Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans." Microbiology and Molecular Biology Reviews 71, no. 2 (2007): 348–76. http://dx.doi.org/10.1128/mmbr.00009-06.
Texte intégralCHEN, AIMIN, JIAJUN ZHANG, ZHANJIANG YUAN, and TIANSHOU ZHOU. "NOISE-INDUCED ALTERNATIVE RESPONSE IN MAP KINASE PATHWAYS WITH MUTUAL INHIBITION." Journal of Biological Systems 17, no. 01 (2009): 125–40. http://dx.doi.org/10.1142/s021833900900282x.
Texte intégralSchrick, Kathrin, Barbara Garvik, and Leland H. Hartwell. "Mating in Saccharomyces cerevisiae: The Role of the Pheromone Signal Transduction Pathway in the Chemotropic Response to Pheromone." Genetics 147, no. 1 (1997): 19–32. http://dx.doi.org/10.1093/genetics/147.1.19.
Texte intégral