Littérature scientifique sur le sujet « San Rafael Swell (Utah) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « San Rafael Swell (Utah) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "San Rafael Swell (Utah)"

1

Chidsey, Thomas, et Paul Anderson. « Ancient delta deposits in the Ivie Creek area, Ferron Sandstone member of the Mancos Shale, western San Rafael Swell, east-central Utah ». Geosites 1 (1 décembre 2019) : 1–18. http://dx.doi.org/10.31711/geosites.v1i1.74.

Texte intégral
Résumé :
In contrast to the beautiful array of colorful layers and spectacular cliffs of the Triassic and Jurassic (251 to 148 million years ago [Ma]) sections in the San Rafael Swell of east-central Utah, most of the Upper Cretaceous (96 to 86 Ma) Mancos Shale produces a drab, barren landscape. However, lying within the Mancos, the Ferron Sandstone, is the most studied unit in the San Rafael Swell. The Ferron has world-class outcrops of rock layers deposited near the shorelines of a sinking, fluvial- (stream) dominated delta system. Along the west flank of the San Rafael Swell, the 80-mile-long (130 km) Ferron outcrop belt of cliffs and side canyons (e.g., the Coal Cliffs, Molen Reef, and Limestone Cliffs [not actually limestone, just misnamed]) provides a three-dimensional view of vertical and lateral changes in the Ferron’s rock layers (facies and sequence stratigraphy), and, as such, is an excellent model for fluvial-deltaic oil and gas reservoirs worldwide (e.g., Chidsey and others, 2004).
Styles APA, Harvard, Vancouver, ISO, etc.
2

Phillips, Stephen P., John A. Howell, Adrian J. Hartley et Magda Chmielewska. « Tidal estuarine deposits of the transgressive Naturita Formation (Dakota Sandstone) : San Rafael Swell, Utah, U.S.A. » Journal of Sedimentary Research 90, no 8 (19 août 2020) : 777–95. http://dx.doi.org/10.2110/jsr.2020.51.

Texte intégral
Résumé :
ABSTRACT Thin tidal estuarine deposits of the Naturita Formation (0–23 m) of the San Rafael Swell record the initial flooding of the Cretaceous Western Interior Seaway, Utah, and capture the transition from inland fluvial systems to fully marine conditions over a time period of 5 My or less. A tide-dominated estuarine environment is favored due to the combined presence of mud and/or carbonaceous drapes on ripples and dunes, bidirectional flow indicators, sigmoidal cross-stratification, herring-bone cross-stratification, and bimodal paleocurrent measurements. Facies associations are arranged in a predictable manner. Locally at the base of the Naturita Formation, tidally influenced fluvial channel deposits are present. These are overlain by tidal bars, including subtidal bars and intertidal point bars. Overlying the tidal bars are sand-flat and mud-flat deposits as well as bedded coal and carbonaceous mudstone that represents a supratidal setting in the estuary. The Formation can be capped by a thin transgressive lag composed of shell debris, and/or pebbles, that marks the final transition into the fully marine Tununk Shale Member of the overlying Mancos Shale. Lateral relationships between estuaries and adjacent paleohighs shed light on the influence of foreland-basin tectonics on the location and preservation of tide-dominated estuaries. Estuarine and shoreface deposits are absent along the eastern flank of the San Rafael Swell and eastward for more than 80 km. This zone of nondeposition or erosion is coincident with the location of the forebulge in the developing foreland basin, implying that growth of the forebulge prohibited the development of, or enhanced the later erosion of, estuarine deposits. Conversely, enhanced accommodation in the transition into the foredeep depozone allow the preservation of tide-dominated estuarine deposits along the western flank of the San Rafael Swell. Additionally, the possibility of a pre-Laramide tectonic history for the San Rafael Swell is indicated by a distinct lack of Naturita Formation deposits in an area that is coincident with the modern-day axis of the anticline. Overall, the Naturita records the initial flooding of the Western Interior Seaway in the San Rafael Swell region and provides an excellent case study of the deposits that are laid down in a transgressive system that passes from coastal-plain to offshore deposits.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Doolittle, J. A., S. J. Neild, L. D. Sasser et J. W. Tuttle. « Characterizing a Lithosequence within the San Rafael Swell of Utah with EMI ». Soil Horizons 46, no 4 (2005) : 169. http://dx.doi.org/10.2136/sh2005.4.0169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Delaney, Paul T., et Anne E. Gartner. « Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah ». Geological Society of America Bulletin 109, no 9 (septembre 1997) : 1177–92. http://dx.doi.org/10.1130/0016-7606(1997)109<1177:pposmd>2.3.co;2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chidsey, Thomas, et Paul Anderson. « Spectacular crinkled crust—A detachment fold train in the Carmel Formation, western San Rafael Swell, Utah ». Geosites 1 (13 décembre 2019) : 1–9. http://dx.doi.org/10.31711/geosites.v1i1.75.

Texte intégral
Résumé :
Imagine slipping on a small rug overlying a hardwood floor. In the process of sliding along the floor the rug produces a series of small folds and the rug moves forward from its original position. The same could be said for the “crinkled crust,” or folded layers of rocks in a detachment fold train. A spectacular detachment fold train, consisting of over 100 small, regularly spaced convex-upward folds called anticlines in gypsum-rich rock layers of the Middle Jurassic (about 168 million years ago [Ma]) Carmel Formation, is exposed immediately north of Interstate 70 (I-70) in the San Rafael Swell of east-central Utah (figures 1 and 2). The SanRafael Swell, a large anticlinal uplift, is an icon for everything that makes the Colorado Plateau dramatically scenic and geologically classic. However, the fold train is located in drab-colored, relatively featureless rock layers of the Carmel Formation in an area called Reed Wash along the gently dipping west flank of the Swell. After passing magnificent canyons, buttes, and mesas both to the east and west along I-70, the fold train typically goes unnoticed by not only the average tourist but geologists as well. Once the fold train is pointed out, the geologic observer is immediately struck with awe at this large, well-exposed, complex structural feature. Literally hundreds of classic geologic sites are well displayed in the San Rafael Swell; many are easily accessed overlooks and viewpoints. The detachment fold train, by contrast, is chosen as a geosite for its geologic uniqueness, educational instruction, and research opportunities in structural geology.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Heil, Kenneth, Rich Fleming, J. Porter et William Romme. « A Vegetation Study of Capitol Reef National Park ». UW National Parks Service Research Station Annual Reports 10 (1 janvier 1986) : 37–40. http://dx.doi.org/10.13001/uwnpsrc.1986.2543.

Texte intégral
Résumé :
Capitol Reef National Park lies in a relatively unexplored region of southcentral Utah. The diversity in geology and the elevation gradient (3,500-9,000 feet) allows for diverse vegetation including endemic and rare taxa (Welsh and Chatterley, 1985). Previous floristic studies have been conducted in San Rafael Swell (Harris, 1980) and the Henry Mountains (Neese, 1981); however, aside from classification of coniferous habitat types (Youngblood and Mauk, 1985), no community studies have been done in this region.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Heil, Kenneth, Rich Fleming, J. Porter et William Romme. « A Vegetation Study of Capitol Reef National Park ». UW National Parks Service Research Station Annual Reports 11 (1 janvier 1987) : 25–29. http://dx.doi.org/10.13001/uwnpsrc.1987.2615.

Texte intégral
Résumé :
Capitol Reef National Park lies in a relatively unexplored region of southcentral Utah. The diversity in geology and the elevation gradient (3,500-9,000 feet) allows for diverse vegetation including endemic and rare taxa (Welsh and Chatterley, 1985). Previous floristic studies have been conducted in San Rafael Swell (Harris, 1980) and the Henry Mountains (Neese, 1981); however, aside from classification of coniferous habitat types (Youngblood and Mauk, 1985), no community studies have been done in this region.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Heil, Kenneth, Rich Fleming, J. Porter et William Romme. « A Vegetation Study of Capitol Reef National Park ». UW National Parks Service Research Station Annual Reports 12 (1 janvier 1988) : 51–57. http://dx.doi.org/10.13001/uwnpsrc.1988.2697.

Texte intégral
Résumé :
Capitol Reef National Park lies in a relatively unexplored region of southcentral Utah. The diversity in geology and the elevation gradient (3,500-9,000 feet) allows for diverse vegetation including endemic and rare taxa (Welsh and Chatterley 1985). Previous floristic studies have been conducted in San Rafael Swell (Harris 1980) and the Henry Mountains (Neese 1981); however, aside from classification of coniferous habitat types (Youngblood and Mauk 1985), no community studies have been done in this region.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Johnson, Kaj M., et Arvid M. Johnson. « Localization of layer-parallel faults in San Rafael swell, Utah and other monoclinal folds ». Journal of Structural Geology 22, no 10 (octobre 2000) : 1455–68. http://dx.doi.org/10.1016/s0191-8141(00)00046-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Braathen, Alvar, Elizabeth Petrie, Tonje Nystuen, Anja Sundal, Elin Skurtveit, Valentin Zuchuat, Marte Gutierrez et Ivar Midtkandal. « Interaction of deformation bands and fractures during progressive strain in monocline - San Rafael Swell, Central Utah, USA ». Journal of Structural Geology 141 (décembre 2020) : 104219. http://dx.doi.org/10.1016/j.jsg.2020.104219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "San Rafael Swell (Utah)"

1

Zilberfarb, Alexa R. « Metamorphism of Cretaceous Standstones by Natural Coal-Fires, San Rafael Swell, Utah ». Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/scripps_theses/496.

Texte intégral
Résumé :
Underground coal fires commonly metamorphose or melt surrounding rocks at temperatures exceeding 1000°C. Numerous “baked” sandstone clinker deposits occur in the Cretaceous sedimentary rocks exposed in the San Rafael Swell, UT. This study examines clinker in three main localities: 1) East Carbon, UT, 2) Helper, UT, and 3) Emery, UT. The extent of pyrometamorphism in these areas is variably developed, but reached high enough temperature in Helper, UT to initiate melting and the production of paralavas. These paralavas were examined compositionally and mineralogically to determine melting conditions, peak temperatures, and mobility of different metals as a result of pyrometamorphism. X-ray diffraction and petrographic analysis showed that paralavas in the Helper locality contain the high temperature SiO2 polymorphs tridymite and cristobalite which alone indicate temperatures exceeding 875°C in several samples. Paralavas containing diopside+tridymite and cordierite+mullite+cristobalite provide more restrictive estimates of temperature as they form cotectic and eutectic assemblages in the SiO2-Mgo-CaO and SiO2-MgO-Al2O3, respectively. The assemblages indicate minimum temperatures of melting and metamorphism of 1330–1465ºC. The high temperatures of the paralavas generate increased metal mobility, potentially signifying a hazard if leached out into the environment
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schieb, William M. « Hydraulic Testing of the Big Hole Fault, Northern San Rafael Swell, Utah ». DigitalCommons@USU, 2004. https://digitalcommons.usu.edu/etd/6721.

Texte intégral
Résumé :
Six cross-hole packer tests were conducted at the Big Hole fault, a dip-slip normal fault in the northern San Rafael Swell of east-central Utah. Three tests were conducted at each of two locations along the fault, each location having a different total displacement. Water was injected in the footwall, hanging wall, and fault core and pressure changes were monitored in isolated intervals in the adjoining wells. Response curves were analyzed using the type curves developed by Hsieh and Neuman, and Theis, in order to evaluate the hydraulic properties of the fault and its associated damage zone. The tests were not quantitatively interpretable. Response curves were a poor match for Hsieh type curves and failed to give a positive definite hydraulic conductivity tensor. Theis analysis showed transmissivity varied over four orders of magnitude. The fault was both a barrier to and a conduit for fluid flow, indicating it was both heterogeneous and anisotropic with regard to flow. No correlation was seen between the fault displacement and the hydraulic properties of the fault. The lack of consistent results indicates a high variability in the hydraulic properties of the fault, possibility resulting from changes in fault core thickness and slip surface density over small distances. Injection testing at this intermediate scale is not an effective method in determining hydraulic properties of faults in sandstone reservoirs with deformation band style faulting.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ayers, James D. « Lithologic Evidence of Jurassic/Cretaceous Boundary Within the Nonmarine Cedar Mountain Formation, San Rafael Swell, Utah ». Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1097256637.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Osborn, Caleb R. « Microfacies Analysis, Sedimentary Petrology, and Reservoir Characterization of the Sinbad Limestone Based Upon Surface Exposures in the San Rafael Swell, Utah ». BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/1414.

Texte intégral
Résumé :
The Lower Triassic Sinbad Limestone Member of the Moenkopi Formation has produced minor amounts of oil in the Grassy Trail Creek field near Green River, Utah and is present below much of central Utah including the recently discovered Covenant field. Superb outcrops of this thin (15 m), mixed carbonate-silicilastic unit in the San Rafael Swell permit detailed analysis of its vertical and lateral reservoir heterogeneity. Vertically, the Sinbad Limestone comprises three facies associations: (A) a basal storm-dominated, well-circulated skeletal-oolitic-peloidal limestone association, (B) a storm-dominated, poorly-circulated hummocky cross-stratified siliciclastic/peloidal association, and (C) a capping peritidal cross-bedded oolitic dolograinstone association. Eleven microfacies are present in 14 measured sections within the Sinbad Limestone. Lateral variation is most pronounced in the upper part of the basal limestone where storm-deposited beds pinch out over a lateral distance of one kilometer. Otherwise, individual beds and microfacies display a large degree of lateral homogeneity and regional persistence. Diagenesis is strongly controlled by microfacies. Diagenetic elements include marine fibrous calcite cements, micritized grains, compaction, dissolution and neomorphism of aragonite grains, meteoric cements, pressure dissolution, and dolomitization. The paragenetic sequence progresses from marine to meteoric to burial. Marine and meteoric cements occlude much of the depositional porosity. Hydrocarbon-lined interparticle and separate vug (largely molds) pores (1-5%) characterize the skeletal-oolitic limestones with permeability ranging from 0-100 md. Low permeability/porosity characterizes the middle silicilastic unit. The best reservoir qualities (permeability 400 md) occur in portions of the dolomitized oolitic grainstones that form the upper 2 to 3 m of the Sinbad Limestone. Fracture analysis of the studied area indicates a strong NW-SE trend. Fracture spacing is associated with lithology. Fracturing of limestone possibly displays a higher dependence upon bed thickness and microfacies type. The degree of dolomitization controls and increases fracture spacing while siltstones display more closely spaced fractures. The basal limestone unit is an oil storage unit, medial siltstones are flow baffles/barriers, and the dolostone caprock is an oil flow unit. If good connectivity through fractures can be obtained between the dolostone and limestone units, the Sinbad Limestone has potential to serve as a reservoir. This study will not only aid in future Sinbad exploration, but will serve as a model for parasequence-scale intervals in thicker mixed carbonate-siliciclastic successions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, Yang. « La diversité bactérienne dans les sols de surface de San Rafael Swell (Utah, USA) et le Desert de Maine (USA) ». Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS120/document.

Texte intégral
Résumé :
Les zones arides couvrent environ un tiers de la surface terrestre de la planète. Des études visant à comprendre la dispersion microbienne dans les déserts ont été réalisées. En effet, les communautés microbiennes du sable des déserts peuvent jouer un rôle important dans la stabilité des sols. Le pyroséquençage pour les ARNr 16S à partir de l’ADN total extrait des sols des échantillons de sable peut donner des renseignements clés sur la structure des communautés bactériennes qui les composent. Dans cette étude, la diversité et la structure des communautés bactériennes de la surface du sol des déserts des l'États de l'Utah et du Maine ont été mises en évidence. Nous avons mise en œuvre une procédure permettant l'analyse des séquences de l’ADNr 16S en combinant des outils préexistants dédiés à la métagénomique. Ainsi, des corrélations entre certains facteurs environnementaux et la diversité bactérienne dans les deux déserts, ont pu être établis.Le désert du Maine situé dans le nord-est Etats-Unis est une étendue de boue glaciaire, entourée par une forêt de pins. Le sol de ce désert possède les caractéristiques d’on sable avec de très faibles capacités de rétention d'eau, d’une rétention des éléments nutritifs, ainsi qu’une valeur de pH relativement faible (pH 5,09). Les échantillons provenant de ce site présentent donc des propriétés particulièrement intéressantes à étudier en lieu avec la diversité bactérienne. Deux échantillons de sable de la surface du désert du Maine ont été obtenus, et le pyroséquençage des gènes d'ADNr 16S obtenus après amplification par PCR à partir de l'ADN total extrait a été utilisé pour évaluer la diversité bactérienne, la structure de la communauté bactérienne et l'abondance relative des principaux taxons. Nous avons observé que les échantillons de sol provenant du désert du Maine présentent une diversité bactérienne singulière, avec une prédominance de Proteobacteria et Actinobacteria. Les bactéries du genre le plus abondant, Acidiphilium, représentent 12,5% du total des séquences d'ADNr 16S. Au total, 1 394 OTU ont été comptabilisées. En comparant les résultats de notre population bactérienne avec des études portant sur des sols avec caractéristiques similaires, nous avons constaté que les échantillons du Maine contiennent une faible diversité du phylum Acidobacteria que les sols acides des certains forêts, et moins de Firmicutes ainsi que plus de Proteobacteria que les sols des déserts oligotrophes.Le Désert de l'Utah présente des caractéristiques géographiques qui ressemblent à Mars. En effet il est caractérisé par la présence de collines de couleur rouge et de sols constitués de grès. Les sites d'échantillonnage couvrent le Gobblin Valley State Park et autour, notamment sur le plateau du Colorado. Avec des approches similaires à ceux utilisés pour le désert du Maine, des corrélations entre facteurs environnementaux (paramètres physico-chimiques) et diversité de structure des communautés bactériennes obtenus, ont été étudiés. Les phylums prédominants sont les Proteobacteria, Actinobacteria, Bacteroidetes et Gemmatimonadetes. Les genres les plus abondants dans nos échantillons sont Cesiribacter, Lysobacter, Adhaeribacter, Microvirga et Pontibacter. Mais de façon notable, il semble que l'abondance relative des Alphaproteobacteria et des Gemmatimonadetes est significativement corrélée aux certains facteurs environnementaux des sols, par exemple de pH et des concentration des matières organiques
Aridity is the dominant climatic factor over approximately 30% of the land surface of the world. Research concerning microbial populations in two U.S. deserts has been performed to determine the diversity of these bacteria. Pyrosequencing-based profiling of 16S rRNA amplicons from surface soils of sand samples can provide key insights into the structure of bacterial communities and their diversity. In this study, we demonstrated the bacterial diversity and community structures of surface soil in the Corolado Plateau in the Utah State and the Desert of Maine using pyrosequencing of 16S rRNA amplicons. We built our pipeline for the analysis of 16S rRNA pyrosequencing data by combining several existing tools of metagenomics. We also examined correlations between certain environmental factors and bacterial diversity in the two deserts.The Desert of Maine is a tract of glacial silt, surrounded by a pine forest, in the state of Maine located in the northeastern USA. The soil of the Desert of Maine has a sandy texture with poor water holding abilities, nutrient retention capabilities and a relatively low pH value (pH 5.09). Samples from this site thus present an interesting place to examine the bacterial diversity in mineral sandy loam soils with an acidic pH and low concentrations of organic materials. Two surface sand samples from the Desert of Maine were obtained, and pyrosequencing of PCR amplified 16S rDNA genes from total extracted DNA was used to assess bacterial diversity, community structure and the relative abundance of major bacterial taxa. We found that the soil samples from the Desert of Maine showed high levels of bacterial diversity, with a predominance of members belonging to the Proteobacteria and Actinobacteria phyla. Bacteria from the most abundant genus, Acidiphilium, represent 12.5% of the total 16S rDNA sequences. In total, 1394 OTUs were observed in the two samples, with the number of common OTUs observed in both samples being 668. By comparing our bacterial population results with studies on related soil environments, we found that the samples contained less Acidobacteria than soils from acid soil forests, and less Firmicutes plus more Proteobacteria than soils from oligotrophic deserts.Deserts in Utah has geographic features that resemble Mars, characterized by red-colored hills, soils and sandstones. Our sample sites cover the Goblin Valley State Park and nearby regions on the Colorado Plateau. We also examined physicochemical parameters of soil from the sample sites to investigate correlations between bacterial community structure and environmental drivers. The predominant phyla of the samples represent members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. The most abundant genera in our samples are Cesiribacter, Lysobacter, Adhaeribacter, Microvirga and Pontibacter. We found that the relative abundance of Alphaproteobacteria and Gemmatimonadetes are significantly correlated to some environmental factors of soils, such as pH and concentration of organic matters
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hansen, Ashley D. « Reservoir characterization and outcrop analogs to the Navajo sandstone in the Central Utah thrust belt exploration play / ». Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1919.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wilcox, William Thomas. « SEQUENCE STRATIGRAPHY OF THE CURTIS, SUMMERVILLE AND STUMP FORMATIONS, UTAH AND NORTHWEST COLORADO ». Miami University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=miami1177422597.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cross, David B. « High-frequency tectonic sequences in the Campanian Castlegate Formation during a transition from the Sevier to Laramide orogeny, Utah, U.S.A ». ScholarWorks@UNO, 2016. http://scholarworks.uno.edu/td/2133.

Texte intégral
Résumé :
Though stratigraphic correlations are abundant in the Cordilleran basin-fill, they rarely include along-strike transects providing a spatio-temporal sense of deformation, sediment-supply and subsidence. A new, high-resolution, regional strike-correlation of the Castlegate Formation reveals progressive northward-growth of the San Rafael Swell during two embryonic episodes of Laramide-style deformation in central Utah. The intrabasinal deformation-events produced gentle lithospheric-folding punctuated by erosional-truncation of upwarped regions. The earliest episode occurred at 78 Ma in the southern San Rafael Swell likely causing soft-sediment deformation and stratal-tilting. Following this the alluvial-plain was leveled and rapid, extensive-progradation took place. A second episode, at 75 Ma, where deformation was focused in the northern San Rafael Swell, also caused sediment-liquefaction and erosional beveling. The stratal-tilting and sediment-liquefaction is attributed to seismicity induced by basal-traction between a subducting flat-slab and continental-lithosphere. The south-to north time-transgression of uplift is spatio-temporally consistent with NE-propagation of an oceanic-plateau subducted shallowly beneath the region.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ankeny, Samuel Robert. « Absolute architecture scaled experience / ». Thesis, Montana State University, 2007. http://etd.lib.montana.edu/etd/2007/ankeny/AnkenyS0507.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Koebli, Danielle. « A Geochemical and Petrological Analysis of the San Rafael Volcanic Field, Utah ». Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7417.

Texte intégral
Résumé :
The San Rafael Volcanic Field, Utah, is a 4.6 Ma extinct monogenetic field that is found in the Northern Transition Zone of the Colorado Plateau. The field has been eroded, leaving the dikes, conduits, and sills visible. Within the sills we see evidences of immiscibility in the form of an intermediate syenite (~50 wt% SiO2) enclosed in a mafic shonkinite (~48 wt % SiO2). Field relations indicate that sills were formed due to single events (Richardson et al., 2015), which makes in-situ differentiation the process at the origin of both rock types. Geochemical data supports differentiation of syenite and shonkinite from a single melt. The syenites are more enriched in LREE than shonkinites. The rocks are enriched in LREE compared to an OIB source, indicating melting of a hydrated lithosphere interacting with an asthernospheric garnet peridotite. Olivine with a composition of Fo80-90 further support asthernospheric origin, and pyroxenes indicate that depth of crystallization would have begun around 33 Km, indicating that the melt would have pooled at the base of the crust as it traveled, supporting base of the lithosphere origins. Rhyolite-MELTS modeling further supports differentiation within the sills as the formations of feldspars, biotite and hornblende did not occur until ~800m which would have allowed for fractional crystallization to occur, leading to the immiscibility process and resulting formation of syenite and shonkinite.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "San Rafael Swell (Utah)"

1

Delaney, Paul T. Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. [Reston, Va.] : U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Delaney, Paul T. Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. [Menlo Park, CA] : U.S. Geological Survey, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kelsey, Michael R. Hiking Utah's San Rafael Swell. Springville, Utah, USA : Kelsey Pub. Co., 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Canyoneering : The San Rafael Swell. Salt Lake City, Utah : University of Utah Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kelsey, Michael R. Hiking and exploring Utah's San Rafael Swell. 2e éd. Provo, Utah, USA : Kelsey Pub., 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kelsey, Michael R. Hiking and exploring Utah's San Rafael Swell : Including A history of the San Rafael Swell by Dee Anne Finken and Geology of the San Rafael Swell by Lynn Jackson. 3e éd. Provo, Utah : Kelsey Pub., 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Durrant, Jeffrey O. Struggle over Utah's San Rafael Swell : Wilderness, national conservation areas, and national monuments. Tucson, AZ : University of Arizona Press, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Durrant, Jeffrey O. Struggle over Utah's San Rafael Swell : Wilderness, national conservation areas, and national monuments. Tucson : University of Arizona Press, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

United States. Bureau of Land Management. San Rafael Resource Area. Combined hydrocarbon lease conversion : Draft environmental assessment : Kirkwood Oil and Gas and Richard J. Valentine leases, San Rafael swell special tar sand area. Price, Utah : San Rafael Resource Area, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

United States. Congress. House. Committee on Resources. San Rafael Swell National Heritage and Conservation Act : Report together with dissenting views (to accompany H.R. 3625) (including cost estimate of the Congressional Budget Office). [Washington, D.C : U.S. G.P.O., 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Actes de conférences sur le sujet "San Rafael Swell (Utah)"

1

Chidsey, Thomas C. « GEOLOGY OF THE SAN RAFAEL SWELL, EAST-CENTRAL UTAH ». Dans 72nd Annual GSA Rocky Mountain Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020rm-345734.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Steele, Peter A. « STRATIGRAPHIC EVOLUTION OF THE JURASSIC NAVAJO SANDSTONE ERG, SAN RAFAEL SWELL, CENTRAL UTAH ». Dans GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sundal, Anja, Elizabeth Petrie, Helge Hellevang, Ivar Midtkandal et Alvar Braathen. « REACTIVE FLUID EXPULSION DURING PROGRESSIVE DEFORMATION IN THE FOLD LIMB OF THE SAN RAFAEL SWELL, UTAH, USA ». Dans GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284963.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Axelsen, Lana, Clayton Forster, Kevin G. Bylund, Nathan E. Perdue, Alyson M. DeNittis, Michael A. Stearns, Alessandro Zanazzi et Daniel A. Stephen. « AMMONITE BIOSTRATIGRAPHY AND PALEOCEANOGRAPHY OF THE MANCOS SHALE (UPPER CRETACEOUS) IN THE SAN RAFAEL SWELL, EAST-CENTRAL UTAH ». Dans GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Forster, Clayton, Kevin G. Bylund, Lana Axelsen, Nathan Perdue, Alyson DeNittis, Michael A. Stearns, Alessandro Zanazzi et Daniel A. Stephen. « UPPER CRETACEOUS AMMONITE BIOSTRATIGRAPHY AND PALEOCEANOGRAPHY OF THE MANCOS SHALE IN THE SAN RAFAEL SWELL, EAST-CENTRAL UTAH ». Dans 72nd Annual GSA Rocky Mountain Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020rm-346757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hynek, Scott A., Ryan C. Rowland et Diego P. Fernandez. « TRACKING SALINITY SOURCES IN THE UPPER COLORADO RIVER BASIN : STREAMS CROSSING MESOZOIC MARINE STRATA OF THE SAN RAFAEL SWELL, UTAH ». Dans 72nd Annual GSA Rocky Mountain Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020rm-346819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kirkland, James I., Celina A. Suarez, Marina B. Suarez, Grant C. Willis et Donald D. DeBlieux. « SYNDEPOSITIONAL TECTONICS DURING THE LATE JURASSIC TO BEGINNING OF LATE CRETACEOUS ALONG THE SAN RAFAEL SWELL, UTAH : NOT JUST A LARAMIDE STRUCTURE ». Dans 72nd Annual GSA Rocky Mountain Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020rm-346489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gottberg, Amy, et Marina B. Suarez. « CARBONATE CARBON ISOTOPE CHEMOSTRATIGRAPHY FROM THE RUBY RANCH MEMBER OF THE CEDAR MOUNTAIN FORMATION IN THE WESTERN SAN RAFAEL SWELL ». Dans Joint 55th Annual North-Central / 55th Annual South-Central Section Meeting - 2021. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021nc-362752.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Johnston, Kyrsten, et Gautam Mitra. « MECHANICAL DIFFERENCES BETWEEN LIFT-OFF AND DISHARMONIC FOLDS : EXAMPLES FROM THE SEVIER FOLD-THRUST BELT, WESTERN SAN RAFAEL SWELL, UT AND THE HUDSON VALLEY FOLD-THRUST BELT, NY ». Dans Joint 69th Annual Southeastern / 55th Annual Northeastern GSA Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020se-345037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "San Rafael Swell (Utah)"

1

Doelling, Hellmut H. Geologic map of the Moab and eastern part of the San Rafael Desert 30' x 60' quadrangles, Grand and Emery Counties, Utah, and Mesa County, Colorado. Utah Geological Survey, 2002. http://dx.doi.org/10.34191/m-180dm.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mineral resources of the San Rafael Swell Wilderness Study Areas, including Muddy Creek, Crack Canyon, San Rafael Reef, Mexican Mountain, and Sids Mountain Wilderness study areas, Emery County, Utah. US Geological Survey, 1990. http://dx.doi.org/10.3133/b1752.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stratigraphic and time-stratigraphic cross sections, a north-south transect from near the Uinta Mountain axis across the basin and range transition zone to the western margin of the San Rafael Swell, Utah. US Geological Survey, 1994. http://dx.doi.org/10.3133/i2184d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Correlation of the Middle Jurassic San Rafael Group from Bluff, Utah, to Cortez, Colorado. US Geological Survey, 1997. http://dx.doi.org/10.3133/i2616.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Correlation of Jurassic San Rafael Group and related rocks from Blanding, Utah, to Dove Creek, Colorado. US Geological Survey, 1998. http://dx.doi.org/10.3133/i2667.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Correlation of middle Jurassic San Rafael Group and related rocks from Kane Springs, Utah to Uravan, Colorado. US Geological Survey, 1991. http://dx.doi.org/10.3133/oc134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Correlation of middle Jurassic San Rafael Group and related rocks from Bluff to Monticello in southeastern Utah. US Geological Survey, 2000. http://dx.doi.org/10.3133/mf2351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green Rivers, Utah. US Geological Survey, 1986. http://dx.doi.org/10.3133/wri864019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie