Articles de revues sur le sujet « Sandwich structure »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Sandwich structure ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Junaedi, Harri, Marwa A. Abd El-baky, Mahmoud M. Awd Allah, and Tamer A. Sebaey. "Mechanical Characteristics of Sandwich Structures with 3D-Printed Bio-Inspired Gyroid Structure Core and Carbon Fiber-Reinforced Polymer Laminate Face-Sheet." Polymers 16, no. 12 (2024): 1698. http://dx.doi.org/10.3390/polym16121698.
Texte intégralKrzyżak, Aneta, Michał Mazur, Mateusz Gajewski, Kazimierz Drozd, Andrzej Komorek, and Paweł Przybyłek. "Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties." International Journal of Aerospace Engineering 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/7816912.
Texte intégralLin, Zhengjie, Hengliang Liang, and Hongfei Zhou. "Forming pressure of PMI foam sandwich structure." Journal of Physics: Conference Series 2566, no. 1 (2023): 012040. http://dx.doi.org/10.1088/1742-6596/2566/1/012040.
Texte intégralHossain, Forhad, Md Arifuzzaman, Md Shariful Islam, and Md Mainul Islam. "Thermo-Mechanical Behavior of Green Sandwich Structures for Building and Construction Applications." Processes 11, no. 8 (2023): 2456. http://dx.doi.org/10.3390/pr11082456.
Texte intégralKozak, Janusz. "Joints Of Steel Sandwich Structures." Polish Maritime Research 28, no. 2 (2021): 128–35. http://dx.doi.org/10.2478/pomr-2021-0029.
Texte intégralChang, Bianhong, Zhenning Wang, and Guangjian Bi. "Study on the Energy Absorption Characteristics of Different Composite Honeycomb Sandwich Structures under Impact Energy." Applied Sciences 14, no. 7 (2024): 2832. http://dx.doi.org/10.3390/app14072832.
Texte intégralFeng, Yixiong, Hao Qiu, Yicong Gao, Hao Zheng, and Jianrong Tan. "Creative design for sandwich structures: A review." International Journal of Advanced Robotic Systems 17, no. 3 (2020): 172988142092132. http://dx.doi.org/10.1177/1729881420921327.
Texte intégralKausar, Ayesha, Ishaq Ahmad, Sobia A. Rakha, M. H. Eisa, and Abdoulaye Diallo. "State-Of-The-Art of Sandwich Composite Structures: Manufacturing—to—High Performance Applications." Journal of Composites Science 7, no. 3 (2023): 102. http://dx.doi.org/10.3390/jcs7030102.
Texte intégralFu, Yibin, Jun Zhou, and Xiaosheng Gao. "Sandwiched hollow sphere structures: A study of ballistic impact behavior using numerical simulation." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 12 (2013): 2068–78. http://dx.doi.org/10.1177/0954406213515857.
Texte intégralWang, Dong-Mei, and Rui Yang. "Investigation of vibration transmissibility for paper honeycomb sandwich structures with various moisture contents." Mechanics & Industry 20, no. 1 (2019): 108. http://dx.doi.org/10.1051/meca/2019002.
Texte intégralZhang, Zhen, Jian Guang Zhang, Xiu Zhi Liu, Yong Hai Wen, and Shao Bo Gong. "Numerical and Experimental Studies of Composites Sandwich Structure with a Rectangular Cut-Out." Applied Mechanics and Materials 395-396 (September 2013): 891–96. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.891.
Texte intégralWang, Dong Mei. "Evaluation Equation of the Flat Compression Properties of Corrugated Sandwich Structure." Advanced Materials Research 189-193 (February 2011): 202–7. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.202.
Texte intégralSharif, Umer, Bei Bei Sun, Peng Zhao, Dauda Sh Ibrahim, Orelaja Oluseyi Adewale, and Aleena Zafar. "Dynamic Behavior Analysis of the Sandwich Beam Structure with Magnetorheological Honeycomb Core under Different Magnetic Intensities: A Numerical Approach." Materials Science Forum 1047 (October 18, 2021): 31–38. http://dx.doi.org/10.4028/www.scientific.net/msf.1047.31.
Texte intégralLi, Xiang, Li Cheng Yu, You Hui Zhou, Yang Li, and Xun Zhang. "Numerical Simulation of New Class-Honeycomb Sandwich Structure's Core." Advanced Materials Research 834-836 (October 2013): 1601–6. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.1601.
Texte intégralXu, Jinglin, Jianqing Liu, Wenbin Gu, Xin Liu, and Tao Cao. "Shock Wave Attenuation Characteristics of Aluminum Foam Sandwich Panels Subjected to Blast Loading." Shock and Vibration 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2686389.
Texte intégralWang, Xishu, Yuhang An, Nannan Dou, and Zhengbin Wu. "The peeling strength analysis of sandwich structure with cohesive element model." ITM Web of Conferences 47 (2022): 03016. http://dx.doi.org/10.1051/itmconf/20224703016.
Texte intégralJianfei, Li, Xu Zejian, and Liu Yan. "Damage effect of composite sandwich structure under shock wave loading." Journal of Physics: Conference Series 2891, no. 6 (2024): 062013. https://doi.org/10.1088/1742-6596/2891/6/062013.
Texte intégralShifa, M., F. Tariq, and R. A. Baloch. "Effect of Carbon Nanotubes on Mechanical Properties of Honeycomb." Nucleus 54, no. 1 (2017): 1–6. https://doi.org/10.71330/thenucleus.2017.89.
Texte intégralHujare, Pravin P., and Anil D. Sahasrabudhe. "Effect of Thickness of Damping Material on Vibration Control of Structural Vibration in Constrained Layer Damping Treatment." Applied Mechanics and Materials 592-594 (July 2014): 2031–35. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.2031.
Texte intégralChang, Bianhong, Zhenning Wang, and Guangjian Bi. "Study on the Impact Resistance of the Honeycomb Composite Sandwich Structure by a Fragment Flight Angle." Applied Sciences 14, no. 23 (2024): 11218. https://doi.org/10.3390/app142311218.
Texte intégralWei, Dong, Shaoan Li, Laiyu Liang, Longfei Sun, and Yaozhong Wu. "Low-Velocity Impact Response of Sandwich Structure with Triply Periodic Minimal Surface Cores." Polymers 17, no. 6 (2025): 712. https://doi.org/10.3390/polym17060712.
Texte intégralCui, Zhen, Jiaqi Qi, Yuechen Duan, et al. "Low-Velocity Impact Resistance of 3D Re-Entrant Honeycomb Sandwich Structures with CFRP Face Sheets." Polymers 15, no. 5 (2023): 1092. http://dx.doi.org/10.3390/polym15051092.
Texte intégralSantoso, Djarot Wahju, and Kris Hariyanto. "COMPARISON OF SANDWICH COMPOSITE WING STRUCTURE WITH BALSA WOOD (CASE STUDY OF UAV AIRCRAFT FIXED WING VTOL VX-2)." Vortex 3, no. 2 (2022): 98. http://dx.doi.org/10.28989/vortex.v3i2.1236.
Texte intégralFomin, A., V. Koshuro, M. Fomina, A. Aman, and S. Palis. "Structure and characteristics of a thin-layer "aluminum - carbon nanotubes" sandwich structure." Journal of Physics: Conference Series 2086, no. 1 (2021): 012180. http://dx.doi.org/10.1088/1742-6596/2086/1/012180.
Texte intégralTian, Ce, Zhimin Tian, Xinwei Cao, and Shangwei Dong. "Lightweight design of composite sandwich corrugated structures based on variable density method." Journal of Physics: Conference Series 2808, no. 1 (2024): 012076. http://dx.doi.org/10.1088/1742-6596/2808/1/012076.
Texte intégralWang, Yingjie, Shenghang Cai, and Qin Zhang. "Bending stiffness analysis of regular polyhedron sandwich structures." Journal of Physics: Conference Series 2842, no. 1 (2024): 012101. http://dx.doi.org/10.1088/1742-6596/2842/1/012101.
Texte intégralSujiatanti, S. H., Achmad Zubaydi, and A. Budipriyanto. "Finite Element Analysis of Ship Deck Sandwich Panel." Applied Mechanics and Materials 874 (January 2018): 134–39. http://dx.doi.org/10.4028/www.scientific.net/amm.874.134.
Texte intégralWu, Hexiang, Jia Qu, and Linzhi Wu. "Experimental and Numerical Study on Impact Behavior of Hourglass Lattice Sandwich Structures with Gradients." Materials 16, no. 18 (2023): 6275. http://dx.doi.org/10.3390/ma16186275.
Texte intégralVinod, G. Patil, and L. Adasul Amruta. "Optimization and Design for Base Plate of Industrial Elevator." Journal of Recent Activities in Production 4, no. 1 (2019): 9–15. https://doi.org/10.5281/zenodo.2590930.
Texte intégralWEI, PEIXING, JINXIANG CHEN, YUE ZHANG, and LIJUN PU. "WOOD-BASED SANDWICH PANELS: A REVIEW." WOOD RESEARCH 66(5) 2021 66, no. 5 (2021): 875–90. http://dx.doi.org/10.37763/wr.1336-4561/66.5.875890.
Texte intégralSiswanti, H., M. Musta’in, A. M. Mulananda, A. Nasrudin, and D. R. Aldara. "Influence of faceplate thickness reduction on the strength of sandwich structure under static compression loading." IOP Conference Series: Earth and Environmental Science 1423, no. 1 (2024): 012034. https://doi.org/10.1088/1755-1315/1423/1/012034.
Texte intégralAlshaaer, Mazen. "Stiffened Sandwich Beam Using Glass Fiber Reinforced Inorganic Phosphate Cement (IPC)." Greener Journal of Science, Engineering and Technological Research 4, no. 1 (2014): 9–16. https://doi.org/10.15580/gjsetr.2014.1.021014097.
Texte intégralLi, Fangyi, Yuanwen Chen, and Dachang Zhu. "Revealing the Sound Transmission Loss Capacities of Sandwich Metamaterials with Re-Entrant Negative Poisson’s Ratio Configuration." Materials 16, no. 17 (2023): 5928. http://dx.doi.org/10.3390/ma16175928.
Texte intégralEmi Nor Ain Mohammad, Nurul, Aidah Jumahat, and Mohamad Fashan Ghazali. "Impact Properties of Aluminum Foam – Nanosilica Filled Basalt Fiber Reinforced Polymer Sandwich Composites." International Journal of Engineering & Technology 7, no. 3.11 (2018): 77. http://dx.doi.org/10.14419/ijet.v7i3.11.15934.
Texte intégralKulkarni, Dr V. A. "Design and Analysis of Weight Lifting Pallet with Respect to Sandwich Pattern of Pallet." International Journal for Research in Applied Science and Engineering Technology 10, no. 1 (2022): 1761–63. http://dx.doi.org/10.22214/ijraset.2022.40130.
Texte intégralZhang, Yong, Fenfang Yin, and Junwei Ma. "Experimental and Numerical Analysis of the Impact Resistance of Polyurethane Foam Aluminum-Concrete Sandwich Structures." Buildings 14, no. 11 (2024): 3573. http://dx.doi.org/10.3390/buildings14113573.
Texte intégralYan, Chang, Xu Ding Song, and Shuo Feng. "Aluminum Foam Sandwich with Different Face-Sheet Materials under Three-Point Bending." Applied Mechanics and Materials 872 (October 2017): 25–29. http://dx.doi.org/10.4028/www.scientific.net/amm.872.25.
Texte intégralWang, Chun, Xuan Ming Zhang, and Chun Ying Tang. "Manufacturing Process of Large Scale Sandwich Structure with Variable Thickness of PMI Foam Core." Advanced Materials Research 299-300 (July 2011): 816–19. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.816.
Texte intégralCai, Yingqiang, Xiaolong Wang, Fenglin Ouyang, et al. "Study on the Mechanical Properties of a Carbon-Fiber/Glass-Fiber Hybrid Foam Sandwich Structure." Materials 17, no. 9 (2024): 2023. http://dx.doi.org/10.3390/ma17092023.
Texte intégralBaroiu, Nicușor, Elena Beznea, Gelu Coman, and Ionel Chirică. "Static and thermal behaviour of ship structure sandwich panels." Thermal Science, no. 00 (2019): 463. http://dx.doi.org/10.2298/tsci190531463b.
Texte intégralPrabhakaran, S., V. Krishnaraj, Hemashree Golla, and M. Senthilkumar. "Biodegradation behaviour of green composite sandwich made of flax and agglomerated cork." Polymers and Polymer Composites 30 (January 2022): 096739112211036. http://dx.doi.org/10.1177/09673911221103602.
Texte intégralŠuba, Oldřich, Ladislav Fojtl, Oldřich Šuba Jr., Libuše Sýkorová, Soňa Rusnáková, and Jitka Baďurová. "On Flexural Stiffness of Polymer Sandwich Walls." Materials Science Forum 862 (August 2016): 115–22. http://dx.doi.org/10.4028/www.scientific.net/msf.862.115.
Texte intégralLe, Vinh Tung, and Nam Seo Goo. "Thermomechanical Performance of Bio-Inspired Corrugated-Core Sandwich Structure for a Thermal Protection System Panel." Applied Sciences 9, no. 24 (2019): 5541. http://dx.doi.org/10.3390/app9245541.
Texte intégralTian, Hong Wei, Hai Feng Chang, and Hong Jun Ye. "Progress in Foldcore Sandwich Manufacturing and Application." Key Engineering Materials 905 (January 4, 2022): 246–53. http://dx.doi.org/10.4028/www.scientific.net/kem.905.246.
Texte intégralXiao, Pengfei, Chunping Zhou, and Yunfeng Luo. "Study on the influence of hole shapes on the fluid and mechanical properties of perforated honeycomb sandwich structures." Journal of Physics: Conference Series 2808, no. 1 (2024): 012074. http://dx.doi.org/10.1088/1742-6596/2808/1/012074.
Texte intégralDING, Zhendong, Hongshuang LI, and Xiaole GUAN. "Reliability analysis of composite sandwich structure for fuselage skin based on surrogate model." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, no. 2 (2022): 360–68. http://dx.doi.org/10.1051/jnwpu/20224020360.
Texte intégralERYILDIZ, Meltem. "Estimation of three-point bending behavior using finite element method for 3D-printed polymeric sandwich structures with honeycomb and reentrant core." European Mechanical Science 6, no. 3 (2022): 196–200. http://dx.doi.org/10.26701/ems.1101832.
Texte intégralGu, Xuetao, Jiawen Li, Ji Huang, Yaoliang Ao, and Bingxiong Zhao. "Numerical Analysis of the Impact Resistance of Composite A-Shaped Sandwich Structures." Materials 16, no. 14 (2023): 5031. http://dx.doi.org/10.3390/ma16145031.
Texte intégralCorigliano, Pasqualino, Giulia Palomba, Vincenzo Crupi, and Yordan Garbatov. "Stress–Strain Assessment of Honeycomb Sandwich Panel Subjected to Uniaxial Compressive Load." Journal of Marine Science and Engineering 11, no. 2 (2023): 365. http://dx.doi.org/10.3390/jmse11020365.
Texte intégralWei, Yuhan, Ruixian Wu, Luming Zou, Niuniu Liu, and Xin Xue. "Vacuum Brazing Effect on the Interlayer Failure Behaviors of Elastic-Porous Sandwich Structure with Entangled Metallic Wire Mesh." Symmetry 14, no. 5 (2022): 977. http://dx.doi.org/10.3390/sym14050977.
Texte intégral