Littérature scientifique sur le sujet « Seawater electrolysis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Seawater electrolysis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Seawater electrolysis"
Zhang, Fan, Junjie Zhou, Xiaofeng Chen, Shengxiao Zhao, Yayun Zhao, Yulong Tang, Ziqi Tian et al. « The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis ». Nanomaterials 14, no 3 (23 janvier 2024) : 239. http://dx.doi.org/10.3390/nano14030239.
Texte intégralGonzález-Cobos, Jesús, Bárbara Rodríguez-García, Mabel Torréns, Òscar Alonso-Almirall, Martí Aliaguilla, David Galí, David Gutiérrez-Tauste, Magí Galindo-Anguera, Felipe A. Garcés-Pineda et José Ramón Galán-Mascarós. « An Autonomous Device for Solar Hydrogen Production from Sea Water ». Water 14, no 3 (2 février 2022) : 453. http://dx.doi.org/10.3390/w14030453.
Texte intégralLi, Pengsong, Shiyuan Wang, Imran Ahmed Samo, Xingheng Zhang, Zhaolei Wang, Cheng Wang, Yang Li et al. « Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production ». Research 2020 (24 septembre 2020) : 1–9. http://dx.doi.org/10.34133/2020/2872141.
Texte intégralZhao, Li, Xiao Li, Jiayuan Yu et Weijia Zhou. « Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis ». Materials 16, no 7 (28 mars 2023) : 2709. http://dx.doi.org/10.3390/ma16072709.
Texte intégralVitale-Sullivan, Molly E., Quinn Quinn Carvalho et Kelsey A. Stoerzinger. « Facet-Dependent Selectivity of Rutile IrO2 for Oxygen and Chlorine Evolution Reactions ». ECS Meeting Abstracts MA2023-01, no 50 (28 août 2023) : 2577. http://dx.doi.org/10.1149/ma2023-01502577mtgabs.
Texte intégralNie, Jing, Shou Zhi Yi et Di Miao. « Study on Advanced Pretreatment of Seawater by Electrolysis ». Advanced Materials Research 881-883 (janvier 2014) : 598–603. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.598.
Texte intégralPark, Yoo Sei, Jooyoung Lee, Myeong Je Jang, Juchan Yang, Jaehoon Jeong, Jaeho Park, Yangdo Kim, Min Ho Seo, Zhongwei Chen et Sung Mook Choi. « High-performance anion exchange membrane alkaline seawater electrolysis ». Journal of Materials Chemistry A 9, no 15 (2021) : 9586–92. http://dx.doi.org/10.1039/d0ta12336f.
Texte intégralJiang, Siqi, Hongli Suo, Teng Zhang, Caizhi Liao, Yunxiao Wang, Qinglan Zhao et Weihong Lai. « Recent Advances in Seawater Electrolysis ». Catalysts 12, no 2 (20 janvier 2022) : 123. http://dx.doi.org/10.3390/catal12020123.
Texte intégralSunaryo, S. « Hydrogen Production as Alternative Energy Through the Electrolysis Process of Sea Water Originating from Mangrove Plant Areas ». Journal of Physics : Conference Series 2377, no 1 (1 novembre 2022) : 012056. http://dx.doi.org/10.1088/1742-6596/2377/1/012056.
Texte intégralTahri, Walid, Xu Zhou, Rashid Khan et Muhammad Sajid. « Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution ». Sustainability 15, no 19 (29 septembre 2023) : 14389. http://dx.doi.org/10.3390/su151914389.
Texte intégralThèses sur le sujet "Seawater electrolysis"
Convert, Damien. « Propulsion magnétohydrodynamique en eau de mer ». Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10002.
Texte intégralBoissonneau, Patrick. « Propulsion MHD en eau de mer : étude des couplages hydrodynamique-électrochimie-électromagnétisme ». Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10079.
Texte intégralMarais, Caroline. « Formation de concrétions calcomagnésiennes par polarisation cathodique associée à la biocalcification et à l’utilisation de matériaux recyclés pour la protection côtière ». Electronic Thesis or Diss., La Rochelle, 2023. http://www.theses.fr/2023LAROS020.
Texte intégralThe objective of this study is to develop a low environmental impact solution for the consolidation of partially submerged coastal areas. This solution, the formation of a limestone concretion based on seawater electolysis, relies on two main aspects: firstly, the efficient use of local resources through the valorization of inert construction waste (recycled aggregates (RA)); and secondly, the biomineralization process involving the hydration of CO2 by the enzyme carbonic anhydrase (CA) found in marine bacteria sampled from the Port of La Rochelle. Three major axes were studied to optimize the precipitation of a binder within the limeston concretion composed of CaCO3 and Mg(OH)2 (the calcareous deposit): the effect of RA dissolution in seawater, the application of cathodic polarization via seawater flow, and the study of CaCO3 bio-precipitation by CO2 capture (the role of CA) by marine strains. Seawater flow allowed the formation of a 200 cm3 agglomerate in 60 days at -500µA/cm², resulting in a growth rate of 3 cm3/day. A 10% increase in compactness was observed when the grid was buried (within the RA) either submerged or emerged. Seawater flow and the presence of RA favored the precipitation of CaCO3, particularly in the form of calcite, leading to an Mg(OH)2/CaCO3 ratio less than or equal to 1, whether under continuous or cyclic polarization. The excessive release of calcium and sulfate ions into solution due to the dissolution of the cementitious matrix within the RA could explain the increase in CaCO3. All strains bio-precipitated CaCO3 in their optimal medium and in the presence of natural seawater. Their production drastically decreased at 3% CO2 (atmospheric CO2 = 0.4%) and in the presence of leachate from recycled aggregates. At 3% CO2, the pH of the medium increased in the presence of the strains, which could indicate the activity of CA
Dupuis, Jennifer. « Investigation d’alliages à base de titane de types béta-métastables pour applications marines : cas particulier d’un winch innovant ». Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0028/document.
Texte intégralTitanium alloys are used in numerous fields as aerospace industry, automotive industry, off-shore industry, and, in several applications such as medical and marine applications. This is due to their good properties like high mechanical strength, low density and excellent corrosion resistance. In order to be used for an innovating winch and so in a marine environment, we have chosen to study three β-metastable titanium alloys which are Ti-6.8Mo-4.5Fe-1.5Al, Ti-15Mo-2.7Nb-3Al-0.2Si and Ti-5Al-5Mo-5V-3Cr. In marine environment, materials are exposed to tough conditions which can generate their destruction. Several modes of degradation exist. It is so interesting to evaluate the corrosion resistance of these alloys and to search their best corrosion protection. So, the heart of the study is to select titanium alloys to meet the specifications of the innovating winch. At first, we defined thermomechanical treatments for those titanium alloys and then these materials were characterized to know their mechanical and metallurgical properties. These tests allowed us to have a well knowledge of mechanical properties of these alloys and to choose which alloys can be employed in a winch. Then, galvanic corrosion tests were made in nitric acid, sodium chloride and sodium hydroxide. We measured potential differences between our treated titanium alloys and other materials which may be used in a winch such as stainless steels, aluminum alloys and leaded brass. Then, in order to evaluate the behavior of the passive film in marine environment of titanium alloys, electrochemical corrosion tests were conducted using a three-electrode method in sodium chloride and natural seawater electrolytes. So, free potential and cyclic voltammetry measurements were conducted. The flaw of titanium alloys is their low friction coefficient. So in order to improve the coefficient of friction of titanium alloys it is useful to do a surface treatment. In this study, a gaseous nitriding thermochemical treatment was done for the most recent developed alloy among the three studied nuances, which is Ti-5Al-5Mo-5V-3Cr. Then this treated alloy was characterized too similarly to the three thermomechanical treated titanium alloys. All of tests we led allowed us to know which titanium alloys with which thermomechanical and surface treatments may be used for the innovating winch
Borell, Esther M. [Verfasser]. « Coral photophysiology in response to thermal stress, nutritional status and seawater electrolysis / submitted by Esther M. Borell ». 2008. http://d-nb.info/990732118/34.
Texte intégralGuan-LunLee et 李貫綸. « Hydrogen generation and CO2 reduction to formic acid using GaN-based films as photoelectrodes in electrolytes of NaCl solution and seawater ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/amxr2j.
Texte intégralLivres sur le sujet "Seawater electrolysis"
Asghari, Elnaz, et Bruno G. Pollet. Sustainable Hydrogen Generation : Electrolysis of seawater and other low-grade surface waters. Iop Publishing Ltd, 2022.
Trouver le texte intégralChapitres de livres sur le sujet "Seawater electrolysis"
Peng, Shengjie. « Hydrogen Production by Seawater Electrolysis ». Dans Electrochemical Hydrogen Production from Water Splitting, 167–202. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_7.
Texte intégralGendel, Youri, Gidon Amikam et Paz Nativ. « Seawater electrolysis ». Dans Electrochemical Power Sources : Fundamentals, Systems, and Applications, 305–26. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-819424-9.00003-3.
Texte intégralSankhula, Lokesh, Devendra Kumar Verma et Rohit Srivastava. « Hydrogen production driven by seawater electrolysis ». Dans Solar-Driven Green Hydrogen Generation and Storage, 363–80. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99580-1.00013-3.
Texte intégralHilbertz, Wolf. « Reef Restoration Using Seawater Electrolysis in Jamaica ». Dans Innovative Methods of Marine Ecosystem Restoration, 35–45. CRC Press, 2012. http://dx.doi.org/10.1201/b14314-5.
Texte intégralActes de conférences sur le sujet "Seawater electrolysis"
Kitazawa, D., M. Fujino et S. Aoba. « Treatment of waste seawater by electrolysis using charcoal electrodes ». Dans OCEANS 2010 IEEE - Sydney. IEEE, 2010. http://dx.doi.org/10.1109/oceanssyd.2010.5603845.
Texte intégral« Analysis of Seawater Electrolysis Technologies for Green Hydrogen Production ». Dans June 21-22, 2023 Lisbon (Portugal). Excellence in Research & Innovation in Education, 2023. http://dx.doi.org/10.17758/eirai19.f0623119.
Texte intégralHashimoto, Koji, Zenta Kato, Naokazu Kumagai et Koichi Izumiya. « Key Materials and Systems for the Use of Renewable Energy in the Form of Methane ». Dans ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79776.
Texte intégralSchenewerk, William Ernest. « Fuel-Cell and Electrolysis By-Product D2O Improves Third Way to Mitigate CO2 ». Dans ASME 2015 Nuclear Forum collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/nuclrf2015-49061.
Texte intégralSusowake, Yuta, Abudul Matin Ibrahimi, Mir Sayed Shah Danish, Tomonobu Senjyu, Abdul Motin Howlader et Paras Mandal. « Multi-Objective Design of Power System Introducing Seawater Electrolysis Plant for Remote Island ». Dans 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2018. http://dx.doi.org/10.1109/isgt-asia.2018.8467912.
Texte intégralMaior, Ioana, Gabriela Elena Badea, Anca Cojocaru, Alexandrina Fodor, Claudia Morgovan et Alina Groze. « AC Impedance Measurements On Electrocatalytic Electrodes Interface For Hydrogen Evolution Kinetics In Seawater Electrolysis ». Dans 2023 17th International Conference on Engineering of Modern Electric Systems (EMES). IEEE, 2023. http://dx.doi.org/10.1109/emes58375.2023.10171718.
Texte intégralGoreau, T. J., W. Hilbertz, A. Azeez, A. Hakeem et J. Allen. « Shore protection, beach formation, and production of building materials and energy using seawater electrolysis technology ». Dans Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178283.
Texte intégralGoreau, T. J., W. Hilbertz, A. Azeez, A. Hakeem, R. Dodge, G. Despaigne et C. Shwaiko. « Restoring coral reefs, oyster banks, and fisheries by seawater electrolysis : coastal zone management and tourism applications ». Dans Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178407.
Texte intégralMurahara, Masataka, et Kazuichi Seki. « On-Site Sodium Production with Seawater Electrolysis as Alternative Energy for Oil by Offshore Wind Power Generation ». Dans 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780994.
Texte intégralNdoye, Babacar, Noufou Ouedraogo, Wondwosen Demisse, Andrew Grizzle, Eva Mutunga et Pawan Tyagi. « 3D Printed and Nickel-Coated Electrodes for Photocatalytic Electrolysis for Hydrogen Generation ». Dans ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70318.
Texte intégral