Littérature scientifique sur le sujet « Seismic Input »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Seismic Input ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Seismic Input"
Denney, Dennis. « Broadband Seismic : Ultimate Input for Quantitative Seismic Interpretation ». Journal of Petroleum Technology 65, no 03 (1 mars 2013) : 154–56. http://dx.doi.org/10.2118/0313-0154-jpt.
Texte intégralUzdin, A. M., G. V. Sorokina et Kh Kh Kurbanov. « A simple seismic input model for estimating the seismic resistance of structures ». Journal of Physics : Conference Series 2131, no 3 (1 décembre 2021) : 032010. http://dx.doi.org/10.1088/1742-6596/2131/3/032010.
Texte intégralLiu, Yue Wei, et Yang Zhou. « Seismic Rotations and Rotational Seismic Input for Building Design ». Applied Mechanics and Materials 405-408 (septembre 2013) : 1953–56. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.1953.
Texte intégralXu, Yang, Jun Zhao, Xiao Yan Xu et Dan Zhu. « Response Spectrum Analysis of a Large-Span Hangar Subjected to Multi-Dimensional Seismic Inputs ». Advanced Materials Research 639-640 (janvier 2013) : 906–10. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.906.
Texte intégralUzdin, Alexander, et Sergei Prokopovich. « Some principles of generating seismic input for calculating structures ». E3S Web of Conferences 157 (2020) : 06021. http://dx.doi.org/10.1051/e3sconf/202015706021.
Texte intégralSari, Anggun Mayang, et Afnindar Fakhrurrozi. « SEISMIC HAZARD MICROZONATION BASED ON PROBABILITY SEISMIC HAZARD ANALYSIS IN BANDUNG BASIN ». RISET Geologi dan Pertambangan 30, no 2 (30 décembre 2020) : 215. http://dx.doi.org/10.14203/risetgeotam2020.v30.1138.
Texte intégralPanza, G. F., F. Vaccari, G. Costa, P. Suhadolc et D. Fäh. « Seismic Input Modelling for Zoning and Microzoning ». Earthquake Spectra 12, no 3 (août 1996) : 529–66. http://dx.doi.org/10.1193/1.1585896.
Texte intégralShargh, Ghasem Boshrouei, et Reza Barati. « Estimation of inelastic seismic input energy ». Soil Dynamics and Earthquake Engineering 142 (mars 2021) : 106505. http://dx.doi.org/10.1016/j.soildyn.2020.106505.
Texte intégralEguchi, Ronald T. « Seismic hazard input for lifeline systems ». Structural Safety 10, no 1-3 (mai 1991) : 193–98. http://dx.doi.org/10.1016/0167-4730(91)90014-z.
Texte intégralLanger, H. « Input parameters for estimating seismic loading ». Natural Hazards 3, no 2 (1990) : 125–39. http://dx.doi.org/10.1007/bf00140427.
Texte intégralThèses sur le sujet "Seismic Input"
Isbiliroglu, Levent. « Strategy for Selecting Input Ground Motion for Structural Seismic Demand Analysis ». Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAU009/document.
Texte intégralThe observed variability is very large among natural earthquake records, which are not consolidated in the engineering applications due to the cost and the duration. In the current practice with the nonlinear dynamic analysis, the input variability is minimized, yet without clear indications of its consequences on the output seismic behavior of structures. The study, herein, aims at quantifying the impact of ground motion selection with large variability on the distribution of engineering demand parameters (EDPs) by investigating the following questions:What is the level of variability in natural and modified ground motions?What is the impact of input variability on the EDPs of various structural types?For a given earthquake scenario, target spectra are defined by ground motion prediction equations (GMPEs). Four ground motion modification and selection methods such as (1) the unscaled earthquake records, (2) the linearly scaled real records, (3) the loosely matched spectrum waveforms, and (4) the tightly matched waveforms are utilized. The tests on the EDPs are performed on a record basis to quantify the natural variability in unscaled earthquake records and the relative changes triggered by the ground motion modifications.Each dataset is composed by five accelerograms; the response spectrum compatible selection is then performed by considering the impact of set variability. The intraset variability relates to the spectral amplitude dispersion in a given set, and the interset variability relates to the existence of multiple sets compatible with the target.The tests on the EDPs are performed on a record basis to quantify the natural variability in unscaled earthquake records and the relative changes triggered by the ground motion modifications. The distributions of EDPs obtained by the modified ground motions are compared to the observed distribution by the unscaled earthquake records as a function of ground motion prediction equations, objective of structural analysis, and structural models.This thesis demonstrates that a single ground motion set, commonly used in the practice, is not sufficient to obtain an assuring level of the EDPs regardless of the GMSM methods, which is due to the record and set variability. The unscaled real records compatible with the scenario are discussed to be the most realistic option to use in the nonlinear dynamic analyses, and the ‘best’ ground motion modification method is demonstrated to be based on the EDP, the objective of the seismic analysis, and the structural model. It is pointed out that the choice of a GMPE can provoke significant differences in the ground motion characteristics and the EDPs, and it can overshadow the differences in the EDPs obtained by the GMSM methods
Chapman, Martin Colby. « Disaggregated Seismic Hazard and the Elastic Input Energy Spectrum : An Approach to Design Earthquake Selection ». Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30636.
Texte intégralPh. D.
Matevosian, Armond. « Hybrid adaptive feedforward control of structures to seismic inputs ». Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/44969.
Texte intégralMaster of Science
Nowak, Paul Scott. « Effect of nonuniform seismic input on arch dams ». Thesis, 1989. https://thesis.library.caltech.edu/7830/8/Nowak_ps_1989.pdf.
Texte intégralStandard earthquake analyses of civil engineering structures use uniform ground motions even though considerable variations in both amplitude and phase can occur along the foundation interface for long-span bridges and large dams. The objective of this thesis is to quantify the effect that these nonuniformities have on the structural response.
The nonuniform, free-field motions of the foundation interface are assumed to be caused by incident plane body waves. The medium in which these waves travel is a linear, elastic half-space containing a canyon of uniform cross section in which the structure is placed. The solutions for the free-field motions that are due to incident SH, P and SV waves are calculated using the boundary element method.
An analysis of Pacoima (arch) dam located near Los Angeles, California, is performed for both uniform and nonuniform excitations. The important effect of nonuniformities in the free-field motions, sometimes leading to a decrease in the dam response and sometimes to an increase, is quantified.
Sanaie-Fard, Ali. « A probabilistic approach for seismic risk assessment with uncertain input parameters ». Thesis, 2002. http://hdl.handle.net/2429/13427.
Texte intégralKottke, Albert R. (Albert Richard). « Impact of input ground motions and site variability on seismic site response ». Thesis, 2006. http://hdl.handle.net/2152/30468.
Texte intégralLivres sur le sujet "Seismic Input"
Sewell, R. T. Ground motion input in seismic evaluation studies : Impacts of artificial time history input on in-structure demand spectra. Washington, DC : Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1996.
Trouver le texte intégralWu, S. C. Ground motion input in seismic evaluation studies : Impacts on risk assessment of uniform hazard spectra. Washington, DC : The Commission, 1996.
Trouver le texte intégralIAEA. Non-Linear Response to a Type of Seismic Input Motion. International Atomic Energy Agency, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Seismic Input"
Cimellaro, Gian Paolo, et Sebastiano Marasco. « Seismic Input ». Dans Introduction to Dynamics of Structures and Earthquake Engineering, 281–307. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72541-3_12.
Texte intégralYoshida, Nozomu. « Input Earthquake Motions ». Dans Seismic Ground Response Analysis, 31–43. Dordrecht : Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9460-2_3.
Texte intégralMichele Calvi, G., Daniela Rodrigues et Vitor Silva. « A Redefinition of Seismic Input for Design and Assessment ». Dans Recent Advances in Earthquake Engineering in Europe, 69–100. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75741-4_3.
Texte intégralHoroz, Burak, Cem Yalçın et Ercan Yüksel. « Determination of Input Energy Profile in Structures Through Seismic Interferometry ». Dans Gulf Conference on Sustainable Built Environment, 269–77. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39734-0_16.
Texte intégralKouteva-Guentcheva, Mihaela, et Giuliano F. Panza. « NDSHA—A Reliable Modern Approach for Alternative Seismic Input Modelling ». Dans Lecture Notes in Civil Engineering, 85–101. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73932-4_7.
Texte intégralShreyasvi, C., N. Badira Rahmath et Katta Venkataramana. « Influence of Variabilities of Input Parameters on Seismic Site Response Analysis ». Dans Lecture Notes in Civil Engineering, 233–44. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0890-5_20.
Texte intégralVaccari, Franco. « A Web Application Prototype for the Multiscale Modelling of Seismic Input ». Dans Earthquakes and Their Impact on Society, 563–84. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21753-6_23.
Texte intégralElGabry, Mohamed, et Hany M. Hassan. « Updated Seismic Input for Next Generation of the Egyptian Building Code ». Dans Sustainable Civil Infrastructures, 55–79. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62586-3_5.
Texte intégralJablonski, A. M., et J. H. Rainer. « Effect of seismic input on hydrodynamic forces acting on gravity dams ». Dans Earthquake Engineering, sous la direction de Shamim A. Sheikh et S. M. Uzumeri, 157–64. Toronto : University of Toronto Press, 1991. http://dx.doi.org/10.3138/9781487583217-021.
Texte intégralFalborski, Tomasz. « Evaluation of Foundation Input Motions Based on Kinematic Interaction Models ». Dans Seismic Behaviour and Design of Irregular and Complex Civil Structures III, 11–22. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33532-8_2.
Texte intégralActes de conférences sur le sujet "Seismic Input"
Floros, Goulielmos. « Enhancing a Built Asset’s Operations for Seismic Excitations : An Integration of Machine Learning & ; BIM ». Dans Design Computation Input/Output 2021. Design Computation, 2021. http://dx.doi.org/10.47330/dcio.2021.cuux3225.
Texte intégralReiser, Cyrille, Euan Anderson et Yermek Balabekov. « Broadband Seismic : The Ultimate Input for Quantitative Seismic Interpretation ? » Dans North Africa Technical Conference and Exhibition. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/150821-ms.
Texte intégralLavorato, Davide, Alessandro Vittorio Bergami, Carlo Rago, Hai-Bin Ma, Camillo Nuti, Ivo Vanzi, Bruno Briseghella et Wei-Dong Zhou. « SEISMIC BEHAVIOUR OF ISOLATED RC BRIDGES SUBJECTED TO ASYNCHRONOUS SEISMIC INPUT ». Dans 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens : Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2017. http://dx.doi.org/10.7712/120117.5561.18104.
Texte intégralRivera-Figueroa, Alan, et Luis A. Montejo. « Evaluation of Spectrum Compatible Bidirectional Seismic Input ». Dans IABSE Symposium, Prague 2022 : Challenges for Existing and Oncoming Structures. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0654.
Texte intégralZanoli, O., C. Smerzini et E. J. Parker. « Vertical Input for Seismic Analysis of Offshore Structures ». Dans Offshore Technology Conference. Offshore Technology Conference, 2016. http://dx.doi.org/10.4043/27140-ms.
Texte intégralLaake, A., et M. Francis. « Seismic Input for Prospect Maturation and Trap Risking ». Dans 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900725.
Texte intégralRinaldis, D., et P. Clemente. « Seismic input characterization for some sites in Italy ». Dans ERES 2013. Southampton, UK : WIT Press, 2013. http://dx.doi.org/10.2495/eres130021.
Texte intégralReiser, Cyrille, Euan Anderson, Yermek Balabekov et Folke Engelmark. « Broadband seismic : The ultimate input for quantitative interpretation ? » Dans SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3627560.
Texte intégralPianigiani, Maria, Valentina Mariani, Marco Tanganelli et Stefania Viti. « THE EFFECTS OF THE SEISMIC INPUT ON THE SEISMIC RESPONSE OF RC BUILDINGS ». Dans 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens : Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3682.602.
Texte intégralZhao, Tao, Fangyu Li et Kurt Marfurt. « Automated input attribute weighting for unsupervised seismic facies analysis ». Dans SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/segam2017-17740318.1.
Texte intégralRapports d'organisations sur le sujet "Seismic Input"
Sewell, R. T., et S. C. Wu. Ground motion input in seismic evaluation studies. Office of Scientific and Technical Information (OSTI), juillet 1996. http://dx.doi.org/10.2172/286264.
Texte intégralO'Connell, W. J. Sensitivity of piping seismic responses to input factors. Office of Scientific and Technical Information (OSTI), mai 1985. http://dx.doi.org/10.2172/6236144.
Texte intégralAllen, T. I., J. Griffin et D. Clark. The 2018 National Seismic Hazard Assessment for Australia : model input files. Geoscience Australia, 2019. http://dx.doi.org/10.11636/record.2018.032.
Texte intégralKolaj, M., S. Halchuk et J. Adams. Sixth Generation seismic hazard model of Canada : final input files used to generate the 2020 National Building Code of Canada seismic hazard values. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331387.
Texte intégralWu, S. C., et R. T. Sewell. Ground motion input in seismic evaluation studies : impacts on risk assessment of uniform hazard spectra. Office of Scientific and Technical Information (OSTI), juillet 1996. http://dx.doi.org/10.2172/285223.
Texte intégralTodd, B. J., C. F. M. Lewis et G. D. Hobson. Resurrection of 1967 single-channel seismic reflection data and isopach map of sediments in central and eastern Lake Erie, Ontario, Canada, and Ohio, Pennsylvania, and New York, U.S.A. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331498.
Texte intégralHalchuk, S., T. I. Allen, J. Adams et G. C. Rogers. Fifth generation seismic hazard model input files as proposed to produce values for the 2015 national building code of Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2014. http://dx.doi.org/10.4095/293907.
Texte intégralKolaj, M., S. Halchuk, J. Adams et T. I. Allen. Sixth Generation Seismic Hazard Model of Canada : input files to produce values proposed for the 2020 National Building Code of Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/327322.
Texte intégralDIXON PAUL. DEVELOPMENT OF EARTHQUAKE GROUND MOTION INPUT FOR PRECLOSURE SEISMIC DESIGN AND POSTCLOSURE PERFORMANCE ASSESSMENT OF A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NV. Office of Scientific and Technical Information (OSTI), novembre 2005. http://dx.doi.org/10.2172/882868.
Texte intégralI. Wong. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV. Office of Scientific and Technical Information (OSTI), novembre 2004. http://dx.doi.org/10.2172/837491.
Texte intégral