Littérature scientifique sur le sujet « Self deployable »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Self deployable ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Self deployable"
Neogi, Depankar, Craig Douglas et David R. Smith. « Experimental Development of Self-Deployable Structures ». International Journal of Space Structures 13, no 3 (septembre 1998) : 157–69. http://dx.doi.org/10.1177/026635119801300305.
Texte intégralDwiana ; Anastasia Maurina, Yosafat Bakti. « MODULAR BAMBOO STRUCTURE DESIGN EXPLORATION WITH DEPLOYABLE CONSTRUCTION SYSTEM ». Riset Arsitektur (RISA) 3, no 04 (5 octobre 2019) : 381–97. http://dx.doi.org/10.26593/risa.v3i04.3521.381-397.
Texte intégralLyu, Tian, Shan Qin, ZiAng Tian, QiYue Zhang, YunJing Xu et KeXin Lin. « Design of a Catapulted Self-deployable UAV ». Journal of Physics : Conference Series 2181, no 1 (1 janvier 2022) : 012042. http://dx.doi.org/10.1088/1742-6596/2181/1/012042.
Texte intégralBettini, William, Jérôme Quirant, Julien Averseng et Bernard Maurin. « Self-Deployable Geometries for Space Applications ». Journal of Aerospace Engineering 32, no 1 (janvier 2019) : 04018138. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000967.
Texte intégraldel Grosso, Andrea E., et Paolo Basso. « Deployable Structures ». Advances in Science and Technology 83 (septembre 2012) : 122–31. http://dx.doi.org/10.4028/www.scientific.net/ast.83.122.
Texte intégralCao, Xu, Yan Xu, Changhong Jiang, Qin Fang et Hao Feng. « Simulation Investigation of the Stowing and Deployment Processes of a Self-Deployable Sunshield ». International Journal of Aerospace Engineering 2021 (6 février 2021) : 1–14. http://dx.doi.org/10.1155/2021/6672177.
Texte intégralMallikarachchi, H. M. Y. C., et S. Pellegrino. « Design of Ultrathin Composite Self-Deployable Booms ». Journal of Spacecraft and Rockets 51, no 6 (novembre 2014) : 1811–21. http://dx.doi.org/10.2514/1.a32815.
Texte intégralZheng, Yuanqing, Guobin Shen, Liqun Li, Chunshui Zhao, Mo Li et Feng Zhao. « Travi-Navi : Self-Deployable Indoor Navigation System ». IEEE/ACM Transactions on Networking 25, no 5 (octobre 2017) : 2655–69. http://dx.doi.org/10.1109/tnet.2017.2707101.
Texte intégralSokolowski, Witold M., et Seng C. Tan. « Advanced Self-Deployable Structures for Space Applications ». Journal of Spacecraft and Rockets 44, no 4 (juillet 2007) : 750–54. http://dx.doi.org/10.2514/1.22854.
Texte intégralJia, Bao Xian, Qing Cheng et Wen Feng Bian. « Design of Deployable Antenna Based on SMPC ». Advanced Materials Research 753-755 (août 2013) : 1457–61. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.1457.
Texte intégralThèses sur le sujet "Self deployable"
Watt, Alan Morrison. « Deployable structures with self-locking hinges ». Thesis, University of Cambridge, 2003. https://www.repository.cam.ac.uk/handle/1810/272077.
Texte intégralStavroulakis, Georgios. « Rapidly deployable, self forming, wireless networks for maritime interdiction operations ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FStavroulakis.pdf.
Texte intégralThesis Advisor(s): Alex Bordetsky. "September 2006." Includes bibliographical references (p. 79-81). Also available in print.
Oueis, Jad. « Radio access and core functionalities in self-deployable mobile networks ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI095/document.
Texte intégralSelf-deployable mobile networks are a novel family of cellular networks, that can be rapidly deployed, easily installed, and operated on demand, anywhere, anytime. They target diverse use cases and provide network services when the classical network fails, is not suitable, or simply does not exist: when the network saturates during crowded events, when first responders need private broadband communication in disaster-relief and mission-critical situations, or when there is no infrastructure in areas with low population density. These networks are challenging a long-standing vision of cellular networks by eliminating the physical separation between the radio access network (RAN) and the core network (CN). In addition to providing RAN functionalities, such as radio signal processing and radio resource management, a base station can also provide those of the CN, such as session management and routing, in addition to housing application servers. As a result, a base station with no backhaul connection to a traditional CN can provide local services to users in its vicinity. To cover larger areas, several base stations must interconnect. With the CN functions co-located with the RAN, the links interconnecting the BSs form the backhaul network. Being setup by the BSs, potentially in an ad hoc manner, the latter may have a limited bandwidth. In this thesis, we build on the properties distinguishing self-deployable networks to revisit classical RAN problems but in the self-deployable context, and address the novel challenges created by the core network architecture. Starting with the RAN configuration, we propose an algorithm that sets a frequency and power allocation scheme. The latter outperforms conventional frequency reuse schemes in terms of the achieved user throughput and is robust facing variations in the number of users and their distribution in the network. Once the RAN is configured, we move to the CN organization, and address both centralized and distributed CN functions placements. For the centralized placement, building on the shortages of state of the art metrics, we propose a novel centrality metric that places the functions in a way that maximizes the traffic that can be exchanged in the network. For the distributed placement, we evaluate the number of needed instances of the CN functions and their optimal placement, considering the impact on the backhaul bandwidth. We further highlight the advantages of distributing CN functions, from a backhaul point of view. Accordingly, we tackle the user attachment problem to determine the CN instances serving each user when the former are distributed. Finally, with the network ready to operate, and users starting to arrive, we tackle the user association problem. We propose a novel network-aware association policy adapted to self-deployable networks, that outperforms a traditional RAN-based policy. It jointly accounts for the downlink, the uplink, the backhaul and the user throughput request
Al-baidhani, Abbas. « Self-deployable positioning systems for emergency situations employing uwb radio technology ». Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667752.
Texte intégralDahl, Marcus. « Design and Construction of a Self-Deployable Structure for the Moon House Project ». Thesis, KTH, Lättkonstruktioner, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185024.
Texte intégralDetta examensarbete behandlar design och konstruktion av en prototyp för Månhusprojektet. Målet var att ta fram ett strukturellt koncept för en stuga med dimensionerna 2 × 2, 5 × 3 m3 som skall kunna veckla ut sig själv på månens yta. En modell i skala 1 till 5 byggdes och testades. Rapporten innehåller bakgrundsinformation om olika konstruktioner, uppblåsbara och utfällningsbara, för rymdapplikationer. Detta utvärderas sedan, tillsammans med tidigare arbete relaterat till projektet, mot kravspecifikationer, f¨or att ta fram en ny design. Resultatet ¨ar en struktur bestående av s.k. “Tape springs” tillverkade i vävd glasfiber. De olika elementen kopplas samman med skarvar av plast. Detta utgör en ram, som sedan kläds med tunn rip-stop polyester. Elastiska veck kombinerat med mekaniska gångjärn gör att strukturen kan packas ihop till en mindre volym. Utfällning av strukturen möjliggörs med en kombination av trycksättning och elastiskt lagrad energi från den påtvingade vikningen. Genom att variera laminatens egenskaper och geometri fås strukturella element som ger ett effektivt vikningsschema. Strukturen togs fram med hjälp av Solid Edge ST6 och plastskarvarna 3D-printades. Test av utfällningen har gjorts med delvis lyckade resultat. Problem och potentiella förbättringar har identifierats och rekommendationer ges för fortsatt utveckling av konceptet.
ACCETTURA, ANTONIO GABRIELE. « Self-deployable structures for advanced space applications : analysis, design and small scale testing ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2014. http://hdl.handle.net/2108/203118.
Texte intégralMallikarachchi, H. M. Yasitha Chinthaka. « Thin-walled composite deployable booms with tape-spring hinges ». Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239395.
Texte intégralFriedman, Noémi. « Investigation of highly flexible, deployable structures : review, modelling, control, experiments and application ». Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00675481.
Texte intégralClemmensen, John Scott Jr. « Design of a Control System for Multiple Autonomous Ground Vehicles to Achieve a Self Deployable Security Perimeter ». Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34165.
Texte intégralMaster of Science
Maetz, Xavier. « Développement et caractérisation expérimentale en microgravité de structures auto-déployables de réflecteurs paraboliques pour applications spatiales ». Electronic Thesis or Diss., Université de Montpellier (2022-....), 2022. http://www.theses.fr/2022UMONS084.
Texte intégralThe miniaturization of satellites represents a significant technological challenge for access to space by reducing costs and development times. The considerable increase in nanosatellite launches is a proof of their interest in multiple applications. Reflective parabolic antennas are widely used for telecommunication, earth observation, navigation and science (deep space exploration) applications. It is the most used solution for satellite antennas that need high gain, because they have good performance and can support any polarization. In general, the diameter of a fixed geometry antenna will depend on the size and layout capability of the satellite platform. But when a fixed geometry antenna is not possible, then a deployable architecture is considered. With small satellites like MicroSats and CubeSats, a satellite parabolic antenna must be a deployable structure. This thesis carried out at the Laboratory of Mechanics and Civil Engineering (LMGC) in Montpellier, co-financed by the National Center for Space Studies (CNES) and the Occitanie region, is part of the collaboration between the mechanism department of CNES and the innovative structure part of the SIGECO team of the LMGC. The objective is to propose a concept of structure for self-deployable reflectors on the scale of CubeSats. These structures are folded to obtain a compact stacked configuration during launch, and have good mechanical strength in the deployed configuration. The passage between the two configurations is carried out only by the release of elastic energy stored in the joints, without any external energy input. In order to ensure the reliable and precise deployment of the mechanisms, it is necessary to be able to understand and model the behavior of the structures. The proposed approach combines modeling, design, prototyping and experimental characterization. The work of this thesis led to the fabrication and integration of two EM (Engineering Model) prototypes. In order to validate the model of these reflectors, the prototypes were deployed and tested in a microgravity environment, during a campaign of 3 parabolic flights
Livres sur le sujet "Self deployable"
Berteaux, Henri O. Self deployable deep sea moorings. Woods Hole, Mass : Woods Hole Oceanographic Institution, 1992.
Trouver le texte intégralCold Hibernated Elastic Memory Structure : Self-Deployable Technology and Its Applications. Taylor & Francis Group, 2018.
Trouver le texte intégralSokolowski, Witold M. Cold Hibernated Elastic Memory Structure : Self-Deployable Technology and Its Applications. Taylor & Francis Group, 2018.
Trouver le texte intégralSokolowski, Witold M. Cold Hibernated Elastic Memory Structure : Self-Deployable Technology and Its Applications. Taylor & Francis Group, 2018.
Trouver le texte intégralSokolowski, Witold M. Cold Hibernated Elastic Memory Structure : Self-Deployable Technology and Its Applications. Taylor & Francis Group, 2018.
Trouver le texte intégralSokolowski, Witold M. Cold Hibernated Elastic Memory Structure : Self-Deployable Technology and Its Applications. Taylor & Francis Group, 2018.
Trouver le texte intégral[Conceptual design of a self-deployable, high performance, parabolic concentrator for advanced solar-dynamic power systems : Final technical report]. [Washington, DC : National Aeronautics and Space Administration, 1991.
Trouver le texte intégralChapitres de livres sur le sujet "Self deployable"
Weder, Benjamin, Uwe Breitenbücher, Kálmán Képes, Frank Leymann et Michael Zimmermann. « Deployable Self-contained Workflow Models ». Dans Service-Oriented and Cloud Computing, 85–96. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44769-4_7.
Texte intégralKanemitsu, Tomomi, Shinji Matsumoto, Haruyuki Namba, Takanori Sato, Hisato Tadokoro, Takao Oura, Kenji Takagi, Shigeru Aoki et Nobuyuki Kaya. « Self-Deployable Antenna Using Centrifugal Force ». Dans IUTAM-IASS Symposium on Deployable Structures : Theory and Applications, 173–82. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9514-8_19.
Texte intégralWu, Chenshu, Zheng Yang et Yunhao Liu. « Self-Deployable Peer-to-Peer Navigation ». Dans Wireless Indoor Localization, 109–36. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0356-2_6.
Texte intégralBujakas, V. I., et A. A. Kamensky. « Self-setting Locks for Petal Type Deployable Space Reflector ». Dans Mechanisms and Machine Science, 177–87. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45387-3_16.
Texte intégralSzyszkowski, W., et K. Fielden. « Controlling the Performance and the Deployment Parameters of a Self-Locking Satellite Boom ». Dans IUTAM-IASS Symposium on Deployable Structures : Theory and Applications, 405–14. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9514-8_42.
Texte intégralKnap, Lech, Andrzej Świercz, Cezary Graczykowski et Jan Holnicki-Szulc. « The Concepts of Telescopic and Self-Deployable Tensegrity-Based Helium-Filled Aerostats ». Dans Lecture Notes in Mechanical Engineering, 157–65. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6049-9_11.
Texte intégralNeogi, D., et C. D. Douglas. « 83. Development of a self-deployable structural element for space truss applications ». Dans Space Structures 4, 1 : 772–782. Thomas Telford Publishing, 1993. http://dx.doi.org/10.1680/ss4v1.19683.0083.
Texte intégralBasu, Soumya Sankar. « A Self-Organized Software Deployment Architecture for a Swarm Intelligent MANET ». Dans Advances in Computational Intelligence and Robotics, 348–73. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8291-7.ch011.
Texte intégralJones, Roselin. « Lifetime Maximization of Target-Covered WSN Using Computational Swarm Intelligence ». Dans Advances in Wireless Technologies and Telecommunication, 383–425. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7335-7.ch018.
Texte intégralActes de conférences sur le sujet "Self deployable"
Zirbel, Shannon A., Mary E. Wilson, Spencer P. Magleby et Larry L. Howell. « An Origami-Inspired Self-Deployable Array ». Dans ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3296.
Texte intégralYou, Zhong, et Nicholas Cole. « Self-Locking Bi-Stable Deployable Booms ». Dans 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1685.
Tuna, Turcan, Salih Ertug Ovur, Etka Gokbel et Tufan Kumbasar. « FOLLY : A Self Foldable and Self Deployable Autonomous Quadcopter ». Dans 2018 6th International Conference on Control Engineering & Information Technology (CEIT). IEEE, 2018. http://dx.doi.org/10.1109/ceit.2018.8751883.
Texte intégralMintchev, S., L. Daler, G. L'Eplattenier, L. Saint-Raymond et D. Floreano. « Foldable and self-deployable pocket sized quadrotor ». Dans 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015. http://dx.doi.org/10.1109/icra.2015.7139488.
Texte intégralWilson, Mary E., Spencer P. Magleby, Larry L. Howell et Anton E. Bowden. « Characteristics of Self-Deployment in Origami-Based Systems ». Dans ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98126.
Texte intégralPehrson, Nathan A., Daniel C. Ames, Spencer P. Magleby et Brian Ignaut. « Design and Analysis of Self-Deployable, Self-Stiffening, and Retractable Arrays ». Dans AIAA Scitech 2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1543.
Texte intégralPehrson, Nathan A., Sam P. Smith, Daniel C. Ames, Spencer P. Magleby et Manan Arya. « Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft ». Dans AIAA Scitech 2019 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0484.
Texte intégralFerraro, Serena, et Sergio Pellegrino. « Self-Deployable Joints for Ultra-Light Space Structures ». Dans 2018 AIAA Spacecraft Structures Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0694.
Texte intégralSokolowski, Witold, Seng Tan, Paul Willis et Mark Pryor. « Shape memory self-deployable structures for solar sails ». Dans Smart Materials, Nano-and Micro-Smart Systems, sous la direction de Nicolas H. Voelcker et Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.814301.
Texte intégralBahr, Ryan, Abdullah Nauroze, Wenjing Su et M. M. Tentzeris. « Self-Actuating 3D Printed Packaging for Deployable Antennas ». Dans 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017. http://dx.doi.org/10.1109/ectc.2017.186.
Texte intégralRapports d'organisations sur le sujet "Self deployable"
Crane Ill, Carl D. The Theoretical Analysis of Self-Deployable Tensegrity Structures. Fort Belvoir, VA : Defense Technical Information Center, février 2004. http://dx.doi.org/10.21236/ada424114.
Texte intégral