Littérature scientifique sur le sujet « Ship Power System »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ship Power System ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ship Power System"
Yin, He, Hai Lan, Ying-Yi Hong, Zhuangwei Wang, Peng Cheng, Dan Li et Dong Guo. « A Comprehensive Review of Shipboard Power Systems with New Energy Sources ». Energies 16, no 5 (27 février 2023) : 2307. http://dx.doi.org/10.3390/en16052307.
Texte intégralBortnowska, Monika. « Prediction of power demand for ship motion control system of sea mining ship fitted with tubular winning system ». Polish Maritime Research 14, no 4 (1 octobre 2007) : 24–30. http://dx.doi.org/10.2478/v10012-007-0036-7.
Texte intégralBukar, Abba Lawan, Chee Wei Tan, Kwan Yiew Lau et Ahmed Tijjani Dahiru. « Optimal planning of hybrid photovoltaic/battery/diesel generator in ship power system ». International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no 3 (1 septembre 2020) : 1527. http://dx.doi.org/10.11591/ijpeds.v11.i3.pp1527-1535.
Texte intégralCheng, Peng, Ning Liang, Ruiye Li, Hai Lan et Qian Cheng. « Analysis of Influence of Ship Roll on Ship Power System with Renewable Energy ». Energies 13, no 1 (18 décembre 2019) : 1. http://dx.doi.org/10.3390/en13010001.
Texte intégralZou, Yin Cai, et Wei Gang Zheng. « The Structure Design of Parent-Subsidiary Wind Sailing Boat and the Matching Research of Power Plant ». Advanced Materials Research 912-914 (avril 2014) : 1032–36. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.1032.
Texte intégralWang, Wenxuan, et WeifengShi. « Application of new power flow calculation in ship power system ». Journal of Physics : Conference Series 2450, no 1 (1 mars 2023) : 012089. http://dx.doi.org/10.1088/1742-6596/2450/1/012089.
Texte intégralWang, Yixue, Zhuoer Wang et Qiang Peng. « Design of New energy ship power safety monitoring system based on Internet of things ». E3S Web of Conferences 261 (2021) : 01034. http://dx.doi.org/10.1051/e3sconf/202126101034.
Texte intégralCheng, Peng, Ji Hui Li et Hai Lan. « Modeling and PSCAD Simulation Analysis on a Ship Power System ». Applied Mechanics and Materials 143-144 (décembre 2011) : 58–62. http://dx.doi.org/10.4028/www.scientific.net/amm.143-144.58.
Texte intégralLiu, Luyuan. « Design of the Comprehensive Monitoring System of Ro-Ro Ship Power Plant Based on LabVIEW ». Journal of Physics : Conference Series 2254, no 1 (1 avril 2022) : 012037. http://dx.doi.org/10.1088/1742-6596/2254/1/012037.
Texte intégralChen, Yajie, Zhiqiang Pan, Ming Ni, Haibo Gao, Zhao Pan, He Huang et Yihang Zhu. « Design of Marine High Power Wireless Charging System ». E3S Web of Conferences 194 (2020) : 02010. http://dx.doi.org/10.1051/e3sconf/202019402010.
Texte intégralThèses sur le sujet "Ship Power System"
Leghorn, Jeremy T. « Modeling for ship power system emulation ». Thesis, Monterey, California. Naval Postgraduate School, 2009. http://hdl.handle.net/10945/4302.
Texte intégralApproved for public release, distribution unlimited
With the U.S. Navy's continued focus on Integrated Fight Thru Power (IFTP) there has been an ever increasing effort to ensure an electrical distribution system that maintains maximum capabilities in the event of system faults. Non-Intrusive Load Monitoring (NILM), which has been used extensively for condition based maintenance applications, could simultaneously be used to enhance the existing zonal protection system employed with Multi-Function Monitors (MFM). A test platform with three 5000 watt synchronous generators is being constructed to emulate a U.S. Navy DDG 51 FLT IIA class ship electric plant. This is being accomplished in order to evaluate the feasibility of improving the fault isolation capabilities of the MFM with NILM implementation. The first step in this endeavor will be to electrically relate the test platform to the DDG electric plant. In order to accomplish this step, the fault simulation results from the test platform will be compared to simulated faults using U.S. Navy data from DDG 51 electric plants. This will allow for the fault isolation results from the test platform to be related to the DDG 51electric plant.
Leghorn, Jeremy T. (Jeremy Thomas). « Modeling for ship power system emulation ». Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50590.
Texte intégralIncludes bibliographical references (p. 68).
With the U.S. Navy's continued focus on Integrated Fight Thru Power (IFTP) there has been an ever increasing effort to ensure an electrical distribution system that maintains maximum capabilities in the event of system faults. This is to ensure that the crew has the ability to complete real time tactical missions in the event of battle damage to any localized portions of the electrical distribution system. Fault isolation is a priority component of the U.S. Navy's Next Generation Integrated Power System (NGIPS) Roadmap, which lays out the framework as well as milestone dates for future development. Non-Intrusive Load Monitoring (NILM), which has been used extensively for condition based maintenance applications, could simultaneously be used to enhance the existing zonal protection system employed with Multi-Function Monitors (MFM). NILM may be able to, inexpensively, use the existing current and voltage sensors available from the MFM hardware to determine electrical loading which could allow for faster fault isolation capability. A test platform with three 5000 watt synchronous generators is being constructed to emulate a U.S. Navy DDG 51 FLT IIA class ship electric plant. This is being accomplished in order to evaluate the feasibility of improving the fault isolation capabilities of the MFM with NILM implementation. The first step in this endeavor will be to electrically relate the test platform to the DDG electric plant. In order to accomplish this step, the fault simulation results from the test platform will be compared to simulated faults using U.S. Navy data from DDG 51 electric plants.
(cont.) This will allow for the fault isolation results from the test platform to be related to the DDG 51 electric plant.
by Jeremy T. Leghorn.
S.M.
Nav.E.
Källman, Jonas. « Ship Power Estimation for Marine Vessels Based on System Identification ». Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79248.
Texte intégralAkinnikawe, Ayorinde. « Investigation of broadband over power line channel capacity of shipboard power system cables for ship communications networks ». Thesis, [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3155.
Texte intégralStallings, Brad L. « Design of a ship service converter module for a reduced-scale prototype integrated power system ». Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.navy.mil/100.2/ADA392078.
Texte intégralThesis advisor(s): Ciezki, John G. ; Ashton, Robert W. "December 2001." Includes bibliographical references (p. 201-202). Also available in print.
Vicenzutti, Andrea. « Innovative Integrated Power Systems for All Electric Ships ». Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424463.
Texte intégralOggigiorno, nelle grandi navi la propulsione elettrica è una valida alternativa a quella meccanica. Infatti, attualmente quest'ultima è limitata solo alle navi con requisiti particolari, quali la necessità di una elevata velocità di crociera o l’uso di combustibili specifici. L'uso della propulsione elettrica, in coppia con la progressiva elettrificazione dei carichi di bordo, ha portato alla nascita del concetto di All Electric Ship (AES). Una AES è una nave in cui tutti i carichi di bordo (propulsione inclusa) sono alimentati da un unico sistema elettrico, chiamato Sistema Elettrico Integrato (Integrated Power System - IPS). L'IPS è un sistema chiave in una AES, per cui richiede una progettazione ed una gestione accurata. In effetti, in una AES tale sistema alimenta quasi tutto, mettendo in evidenza il problema di garantire sia la corretta Power Quality, sia la continuità del servizio. La progettazione di un sistema così complesso viene convenzionalmente fatta considerando i singoli componenti separatamente, per semplificare il processo. Tuttavia tale pratica può portare a prestazioni ridotte, problemi di integrazione e sovradimensionamento. Come se non bastasse, la procedura di progettazione separata influisce pesantemente sull'affidabilità del sistema, a causa della difficoltà nel valutare l'effetto sulla nave di un guasto in un singolo sottosistema. Per questi motivi è necessario un nuovo processo di progettazione in grado di considerare l'effetto di tutti i componenti e sottosistemi del sistema, consentendo così di migliorare i più importanti driver applicati nella progettazione di una nave: efficienza, efficacia, affidabilità e riduzione dei costi. Date queste premesse, l'obiettivo della ricerca era di ottenere una nuova metodologia di progettazione applicabile al sistema elettrico integrato delle AES, in grado di considerare il sistema nel suo insieme, comprese tutte le sue interdipendenze interne. Il risultato di tale ricerca è descritto in questo lavoro di tesi, e consiste in un sub-processo che dovrà essere integrato nel processo di progettazione convenzionale del sistema elettrico integrato. In questa tesi viene effettuata un'ampia rassegna dello stato dell'arte, per consentire la comprensione del contesto, del perché tale processo innovativo è necessario e quali tecniche innovative possono essere utilizzate come un aiuto nella progettazione. Ogni punto è discusso concentrandosi sullo scopo di questa tesi, presentando così argomenti, bibliografia, e valutazioni personali volte ad indirizzare il lettore a comprendere l'impatto del processo di progettazione proposto. In particolare, dopo un primo capitolo dedicato all’introduzione delle AES in cui sono descritte come tali navi si sono evolute e quali sono le applicazioni più impattanti, si effettua una discussione ragionata sul processo di progettazione convenzionale delle navi, contenuta nel secondo capitolo. In aggiunta a questo viene effettuata un'analisi approfondita del processi di progettazione dell’IPS, per spiegare il contesto in cui il processo di progettazione innovativo deve essere integrato. Alcuni esempi di problemi derivanti dal processo di progettazione tradizionale sono dati, per motivare la proposta di un processo nuovo. In aggiunta ai problemi dovuti alla progettazione, altre motivazioni portano alla necessità di un rinnovato processo di progettazione, quali l'imminente introduzione di sistemi di distribuzione innovativi a bordo nave e la recente comparsa di nuovi requisiti il cui impatto sull’IPS è significativo. Per questo, un excursus su questi due temi è fatto nel terzo capitolo, con riferimento alle più recenti fonti letterarie e ricerche. Il quarto capitolo è dedicato alla descrizione degli strumenti che verranno utilizzati per costruire l'innovativo processo di progettazione. La prima parte del capitolo è dedicata alla teoria della fidatezza (dependability), in grado di dare un approccio sistematico e coerente alla determinazione degli effetti guasti sui sistemi complessi. Attraverso la teoria della fidatezza e le sue tecniche è possibile: determinare l'effetto sul sistema dei guasti ai singoli componenti; valutare tutte le possibili cause di un dato evento di avaria; valutare alcuni indici matematici relativi al sistema, al fine di confrontare diverse soluzioni progettuali; definire dove e come il progettista deve intervenire per migliorare il sistema. La seconda parte del quarto capitolo è dedicata ai software per la simulazione del comportamento dell’IPS ed ai test hardware-in-the-loop. In particolare viene discusso l'uso di tali sistemi come aiuto nella progettazione di sistemi di potenza, per permettere di comprendere perché tali strumenti sono stati integrati nel processo di progettazione sviluppato. Il quinto capitolo è dedicato al processo di progettazione sviluppato nel corso della ricerca. Viene discusso come tale processo funziona, come dovrebbe essere integrato nel processo di progettazione convenzionale, e qual è l'impatto che esso ha sulla progettazione. In particolare, la procedura sviluppata implica sia l'applicazione delle tecniche proprie della teoria della fidatezza (in particolare la Failure Tree Analysis), sia la simulazione del comportamento dinamico dell’IPS attraverso un modello matematico del sistema tarato sui transitori elettromeccanici. Infine, per dimostrare l'applicabilità della procedura proposta, nel sesto capitolo viene analizzato un caso di studio: l'IPS di una nave da perforazione offshore oil & gas dotata di posizionamento dinamico. Questo caso di studio è stato scelto a causa dei requisiti molto stringenti di questa classe di navi, il cui impatto sul progetto dell’IPS è significativo. Viene presentata l'analisi dell’IPS tramite la tecnica di Fault Tree Analysis (anche se con un livello di dettaglio semplificato), seguita dal calcolo di diversi indici di affidabilità. Tali risultati, unitamente a norme e regolamenti vigenti, sono stati utilizzati per definire i dati di input per le simulazioni, effettuate utilizzando un modello matematico dell’IPS costruito appositamente. I risultati delle simulazioni hanno consentito di valutare come il sistema dinamicamente si porta all’avaria a partire dai guasti rilevanti, e pertanto di proporre soluzioni migliorative.
Nord, Thomas. « Voltage Stability in an Electric Propulsion System for Ships ». Thesis, KTH, Elektriska energisystem, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118932.
Texte intégralRadan, Damir. « Integrated Control of Marine Electrical Power Systems ». Doctoral thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1984.
Texte intégralThis doctoral thesis presents new ideas and research results on control of marine electric power system.
The main motivation for this work is the development of a control system, power management system (PMS) capable to improve the system robustness to blackout, handle major power system faults, minimize the operational cost and keep the power system machinery components under minimal stress in all operational conditions.
Today, the electric marine power system tends to have more system functionality implemented in integrated automation systems. The present state of the art type of tools and methods for analyzing marine power systems do only to a limited extent utilize the increased knowledge available within each of the mechanical and electrical engineering disciplines.
As the propulsion system is typically consisted of the largest consumers on the vessel, important interactions exists between the PMS and vessel propulsion system. These are interacted through the dynamic positioning (DP) controller, thrust allocation algorithm, local thruster controllers, generators' local frequency and voltage controllers. The PMS interacts with the propulsion system through the following main functions: available power static load control, load rate limiting control and blackout prevention control (i.e. fast load reduction). These functions serve to prevent the blackout and to ensure that the vessel will always have enough power.
The PMS interacts with other control systems in order to prevent a blackout and to minimize operational costs. The possibilities to maximize the performance of the vessel, increase the robustness to faults and decrease a component wear-out rate are mainly addressed locally for the individual control systems. The solutions are mainly implicative (for e.g. local thruster control, or DP thrust allocation), and attention has not been given on the interaction between these systems, the power system and PMS. Some of the questions that may arise regarding the system interactions, are as follows: how the PMS functionality may affect a local thruster control, how the local thruster control may affect the power system performance, how some consumers may affect the power system performance in normal operations and thus affect other consumers, how the power system operation may affect the susceptibility to faults and blackout, how various operating and weather conditions may affect the power system performance and thus propulsion performance though the PMS power limiting control, how propulsion performance may affect the overall vessel performance, which kind of faults can be avoided if the control system is re-structured, how to minimize the operational costs and to deal with the conflicting goals. This PhD thesis aims to provide answers to such questions.
The main contributions of this PhD thesis are:
− A new observer-based fast load reduction system for the blackout prevention control has been proposed. When compared to the existing fast load reduction systems, the proposed controller gives much faster blackout detection rate, high reliability in the detection and faster and more precise load reduction (within 150 miliseconds).
− New advanced energy management control strategies for reductions in the operational costs and improved fuel economy of the vessel.
− Load limiting controllers for the reduction of thruster wear-out rate. These controllers are based on the probability of torque loss, real-time torque loss and the thruster shaft
accelerations. The controllers provide means of redistributing thrust from load fluctuating thrusters to less load fluctuating ones, and may operate independently of the thrust allocation system. Another solution is also proposed where the load limiting controller based on thrust losses is an integrated part of DP thrust allocation algorithm.
− A new concept of totally integrated thrust allocation system, local thruster control and power system. These systems are integrated through PMS functionality which is contained within each thruster PLC, thereby distributed among individual controllers, and independent of the communications and dedicated controllers.
− Observer-based inertial controller and direct torque-loss controller (soft anti-spin controller) with particular attention to the control of machine wear-out rate. These controller contribute to general shaft speed control of electrical thrusters, generators and main propulsion prime movers.
The proposed controllers, estimators and concepts are demonstrated through time-domain simulations performed in MATLAB/SIMULINK. The selected data are typical for the required applications and may differ slightly for the presented cases.
Duvoor, Prashanth. « Energy storage system requirements for shipboard power systems supplying pulsed power loads ». Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-11082007-170421.
Texte intégralWu, Jian. « Data modeling for Shipboard Power System ». Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-03252004-220340.
Texte intégralLivres sur le sujet "Ship Power System"
Sherstnev, Nikolay. Maintenance and repair of ship pipelines, valves and filters. ru : INFRA-M Academic Publishing LLC., 2019. http://dx.doi.org/10.12737/1048799.
Texte intégralShipboard electrical power systems. Boca Raton, FL : Taylor & Francis, 2012.
Trouver le texte intégralDouwe, Stapersma, dir. Design of propulsion and electric power generation systems. London : IMarEST, Institute of Marine Engineering, Science and Technology, 2002.
Trouver le texte intégralWoud, Hans Klein. Design of propulsion and electric power generation systems. London : IMarEST, Institute of Marine Engineering, Science and Technology, 2002.
Trouver le texte intégralWoud, Hans Klein. Design of propulsion and electric power generation systems. London : IMarEST, Institute of Marine Engineering, Science and Technology, 2002.
Trouver le texte intégralBurkov, Aleksey, et Viktor Mihanoshin. Rowing electric installations : overview, analysis, development prospects. ru : INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1832490.
Texte intégralSherstnev, Nikolay. Maintenance and repair of marine pumps. ru : INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1085864.
Texte intégralSangyōshō, Japan Keizai. Heisei 21-nendo shin enerugī tō dōnyū sokushin kiso chōsa : (fūryoku hatsuden setsubi shinsa yōryō seibi tō chōsa) hōkokusho. [Tokyo] : Tekuno Risāchi Kenkyūjo, 2010.
Trouver le texte intégralShin Enerugī Sangyō Gijutsu Sōgō Kaihatsu Kikō (Japan). Shin-enerugī dōnyū hyōka bunseki chōsa (III). Tōkyō : Shin Enerugī Sangyō Gijutsu Sōgō Kaihatsu Kikō, 1994.
Trouver le texte intégralHofheinz, Wolfgang. Protective measures with insulation monitoring : Use of unearthed IT systems in medical used rooms, in ships, in industry and mining. Berlin : VDE-Verlag, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Ship Power System"
Torben, Sverre, Martijn de Jongh, Kristian Eikeland Holmefjord et Bjørnar Vik. « Modelling and Optimization of Machinery and Power System ». Dans A Holistic Approach to Ship Design, 413–31. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02810-7_13.
Texte intégralNie, Wei, Ying Wu et Dabin Hu. « Research of Automatic Scoring System of Ship Power Automation System ». Dans Advances in Intelligent Systems and Computing, 615–22. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54927-4_58.
Texte intégralLiu, Hongdan, Yue Sun et Lanyong Zhang. « Information Reconstruction Strategy for a Ship Power Distribution System ». Dans Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2019), 479–87. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1468-5_59.
Texte intégralPan, Xin, Xinguo Hou et Yuan Feng. « Research on Real-Time Simulation of Ship Power System ». Dans Advances in Intelligent Systems and Computing, 931–37. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54924-3_87.
Texte intégralHuang, Chao, Shengdao Liu, Zhixin Li et Ziwei Liu. « Improved Degaussing Power Supply Applied to Ship Degaussing System ». Dans Lecture Notes in Electrical Engineering, 1100–1110. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1528-4_112.
Texte intégralLiu, Benqin, Jin Yang, Yue Huang et Lei Wang. « Hydraulic Research on Filling and Emptying System of Water-Saving Ship Lock for Navigation-Power Junction in Mountainous River ». Dans Lecture Notes in Civil Engineering, 1492–501. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_132.
Texte intégralFritz, Falko. « Application of an Automated Kite System for Ship Propulsion and Power Generation ». Dans Airborne Wind Energy, 359–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39965-7_20.
Texte intégralXiang, Chuan, Yuhan Li, Qi Cheng et Wenhua Xu. « Management and Control of Hybrid Energy Storage Systemin Ship Integrated Power System ». Dans Lecture Notes in Electrical Engineering, 651–58. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1922-0_54.
Texte intégralLi, C. F., H. Y. Zhang, Y. Zhang et J. C. Kang. « The fire risk assessment of ship power system under engine room fire ». Dans Trends in Maritime Technology and Engineering Volume 2, 231–40. London : CRC Press, 2022. http://dx.doi.org/10.1201/9781003320289-25.
Texte intégralFu, Luzhidan, Yaan Hu et Zhonghua Li. « Research Developments in Hydrodynamics of Ships Entering and Leaving the Tank of a Ship Lift ». Dans Lecture Notes in Civil Engineering, 591–98. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_51.
Texte intégralActes de conférences sur le sujet "Ship Power System"
Whitehead, D., et N. Fischer. « Advanced commercial power system protection practices applied to naval medium voltage power systems ». Dans 2005 IEEE Electric Ship Technologies Symposium. IEEE, 2005. http://dx.doi.org/10.1109/ests.2005.1524713.
Texte intégralYanfeng Gong, Yan Huang et N. Schulz. « Integrated protection system design for shipboard power system ». Dans 2005 IEEE Electric Ship Technologies Symposium. IEEE, 2005. http://dx.doi.org/10.1109/ests.2005.1524681.
Texte intégralWu, Wei, Daifeng Wang, Ari Arapostathis et Kent Davey. « Optimal Power Generation Scheduling of a Shipboard Power System ». Dans 2007 IEEE Electric Ship Technologies Symposium. IEEE, 2007. http://dx.doi.org/10.1109/ests.2007.372135.
Texte intégralDale, S. J. « Ship power system testing and simulation ». Dans 2005 IEEE Electric Ship Technologies Symposium. IEEE, 2005. http://dx.doi.org/10.1109/ests.2005.1524675.
Texte intégralShen, Qunying, Bhuvaneswari Ramachandran, Sanjeev K. Srivastava, Michael Andrus et David A. Cartes. « Power and Energy Management in Integrated Power System ». Dans 2011 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2011. http://dx.doi.org/10.1109/ests.2011.5770907.
Texte intégralGomez-Gualdron, Janeth G., Miguel Velez-Reyes et Luis J. Collazo. « Self-Reconfigurable Electric Power Distribution System using Multi-Agent Systems ». Dans 2007 IEEE Electric Ship Technologies Symposium. IEEE, 2007. http://dx.doi.org/10.1109/ests.2007.372083.
Texte intégralCassimere, B., C. R. Valdez, S. Sudhoff, S. Pekarek, B. Kuhn, D. Delisle et E. Zivi. « System impact of pulsed power loads on a laboratory scale integrated fight through power (IFTP) system ». Dans 2005 IEEE Electric Ship Technologies Symposium. IEEE, 2005. http://dx.doi.org/10.1109/ests.2005.1524672.
Texte intégralHodge, C. G., J. O. Flower et A. Macalindin. « DC power system stability ». Dans 2009 IEEE Electric Ship Technologies Symposium (ESTS 2009). IEEE, 2009. http://dx.doi.org/10.1109/ests.2009.4906548.
Texte intégralParan, S., T. V. Vu, T. El Mezyani et C. S. Edrington. « MPC-based power management in the shipboard power system ». Dans 2015 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2015. http://dx.doi.org/10.1109/ests.2015.7157855.
Texte intégralCrapse, Philip, Jingjiang Wang, John Abrams, Yong-June Shin et Roger Dougal. « Power Quality Assessment and Management in an Electric Ship Power System ». Dans 2007 IEEE Electric Ship Technologies Symposium. IEEE, 2007. http://dx.doi.org/10.1109/ests.2007.372106.
Texte intégralRapports d'organisations sur le sujet "Ship Power System"
Dougal, Roger. A Virtual Test Bed for PEBB-Based Ship Power Systems, Volume 3. Fort Belvoir, VA : Defense Technical Information Center, juin 1997. http://dx.doi.org/10.21236/ada327167.
Texte intégral