Littérature scientifique sur le sujet « SiGe SOLAR CELLS »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « SiGe SOLAR CELLS ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "SiGe SOLAR CELLS"
Diaz, Martin, Li Wang, Dun Li, Xin Zhao, Brianna Conrad, Anasasia Soeriyadi, Andrew Gerger et al. « Tandem GaAsP/SiGe on Si solar cells ». Solar Energy Materials and Solar Cells 143 (décembre 2015) : 113–19. http://dx.doi.org/10.1016/j.solmat.2015.06.033.
Texte intégralZulkefle, Ahmad Aizan, Maslan Zainon, Zaihasraf Zakaria, Mohd Ariff Mat Hanafiah, Nurul Huda Abdul Razak, Seyed Ahmad Shahahmadi, Md Akhtaruzzaman, Kamaruzzaman Sopian et Nowshad Amin. « A Comparative Study between Silicon Germanium and Germanium Solar Cells by Numerical Simulation ». Applied Mechanics and Materials 761 (mai 2015) : 341–46. http://dx.doi.org/10.4028/www.scientific.net/amm.761.341.
Texte intégralACHOUR, M. B., B. DENNAI et H. KHACHAB. « STUDY SIMULATION OF TOP-CELL ON THE PERFORMANCE OF AlxGa1- xAs/Si1-xGexTANDEM SOLAR CELL ». Digest Journal of Nanomaterials and Biostructures 15, no 2 (avril 2020) : 337–43. http://dx.doi.org/10.15251/djnb.2020.152.337.
Texte intégralSoeriyadi, Anastasia H., Brianna Conrad, Xin Zhao, Dun Li, Li Wang, Anthony Lochtefeld, Andrew Gerger, Ivan Perez-Wurfl et Allen Barnett. « Increased Spectrum Utilization with GaAsP/SiGe Solar Cells Grown on Silicon Substrates ». MRS Advances 1, no 43 (2016) : 2901–6. http://dx.doi.org/10.1557/adv.2016.354.
Texte intégralHsieh, C. F., H. S. Wu, Teng Chun Wu et M. H. Liao. « Periodic Nanostructured Thin-Film Solar Cells ». Advanced Materials Research 860-863 (décembre 2013) : 114–17. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.114.
Texte intégralZhang, Qiu Bo, Wen Sheng Wei et Feng Shan. « Analysis on micro-/poly-Crystalline SiGe Alloy Solar Cells ». Advanced Materials Research 690-693 (mai 2013) : 2872–80. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2872.
Texte intégralCaño, Pablo, Manuel Hinojosa, Iván García, Richard Beanland, David Fuertes Marrón, Carmen M. Ruiz, Andrew Johnson et Ignacio Rey-Stolle. « GaAsP/SiGe tandem solar cells on porous Si substrates ». Solar Energy 230 (décembre 2021) : 925–34. http://dx.doi.org/10.1016/j.solener.2021.10.075.
Texte intégralSafi, M., A. Aissat, H. Guesmi et J. P. Vilcot. « SiGe quantum wells implementation in Si based nanowires for solar cells applications ». Digest Journal of Nanomaterials and Biostructures 18, no 1 (mars 2023) : 327–42. http://dx.doi.org/10.15251/djnb.2023.181.327.
Texte intégralDaami, A., A. Zerrai, J. J. Marchand, J. Poortmans et G. Brémond. « Electrical defect study in thin-film SiGe/Si solar cells ». Materials Science in Semiconductor Processing 4, no 1-3 (février 2001) : 331–34. http://dx.doi.org/10.1016/s1369-8001(00)00101-3.
Texte intégralEisele, C., M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel et M. Stutzmann. « Laser-crystallized microcrystalline SiGe alloys for thin film solar cells ». Thin Solid Films 427, no 1-2 (mars 2003) : 176–80. http://dx.doi.org/10.1016/s0040-6090(02)01216-6.
Texte intégralThèses sur le sujet "SiGe SOLAR CELLS"
Judkins, Zachara Steele. « A market analysis for high efficiency multi-junction solar cells grown on SiGe ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42143.
Texte intégralIncludes bibliographical references (leaves 50-53).
Applications, markets and a cost model are presented for III-V multi-junction solar cells built on compositionally graded SiGe buffer layers currently being developed by professors Steven Ringell of Ohio State University and Eugene Fitzgerald of MIT. Potential markets are similar to those currently occupied by high efficiency multi-junction space solar cells grown on a Germanium substrate. Initial cost analysis shows that at production volumes similar to those of the state of the art, cost could be reduced by a factor of' four. Significant market share may be gained in both the space and terrestrial PV markets due to improved performance associated with superior materials properties advantages as well as production cost reductions.
by Zachary Steele Judkins.
M.Eng.
Polyzoeva, Evelina Aleksandrova. « Tradeoffs of the use of SiGe buffer layers in tandem GaAsP/Si solar cells ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107289.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 101-103).
III-V multi-junction solar cells currently have the highest reported theoretical and experimental energy conversion efficiency but their cost, mainly attributed to the use of expensive substrates, limits their widespread use for terrestrial applications. Successful integration of III--V's on a Si substrate to enable a III-V/Si tandem cell can lower the cost of energy by combining the high-efficiency of the III--V materials with the low-cost and abundance of the Si substrate. A maximum theoretical efficiency of 44.8% from a tandem cell on Si can be achieved by using a GaAsP (Eg=1.7 eV) as the top cell. Out of several possible integration routes, the use of a linearly graded SiGe buffer as interfacial layer between the two cells potentially yields the highest quality for the epitaxial GaAsP layer, an essential requirement for realization of high-efficiency solar cells. In this thesis, the impact of the SiGe buffer layer on the optical and electrical characteristics of the bottom Si cell of a GaAsP/Si tandem solar cell was assessed via experimental work. The growth of a SiGe buffer layer was shown to increase the threading dislocation density and as a result the leakage current of the bottom Si cell by about 10x. In addition, the low-bandgap SiGe absorbs more than 80% of the light that is intended for the Si sub-cell, reducing the short-circuit current of the Si cell from 33 mA/cm² to only 6 mA/cm². By using a step-cell design, in which the SiGe was partially etched to allow more light to reach the bottom cell, the current was increased to 20 mA/cm². To quantify the merits of the studied approach as well as evaluate other approaches, we have carried out a theoretical study of absorbed irradiance in a Si single-junction cell, a bonded GaAsP/Si tandem cell, a GaAsP/SiGe/Si tandem cell as well as the step-cell design. The GaAsP/Si bonded tandem cell showed 24% relative improvement in light absorption over a single-junction Si cell. The addition of a SiGe graded buffer was shown to reduce the total absorption by 25%, bringing the efficiency of GaAsP/SiGe/Si tandem cell under that of the Si single-junction cell. The step-cell design, even though successful in increasing light absorption, was not found effective in achieving a higher absorbed power density than that of the Si cell. These results suggest that any future work on integrating GaAsP cells on Si towards a high-performance tandem cell should be focused on using a higher-bandgap material as a graded buffer or using a wafer bonding technique.
by Evelina Aleksandrova Polyzoeva.
Ph. D.
Sharma, Prithu. « Integration of GaAsP alloys on SiGe virtual substrates for Si-based dual-junction solar cells ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/88367.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 117-122).
Integration of III-V compound semiconductors with silicon is an area that has generated a lot of interest because III-V materials and Si are best suited for different types of devices. Monolithic integration enables the best material to be chosen for each application, enabling new functionalities with the potential of additional miniaturization on a system level. Integration of GaAsP alloys on Si substrates would enable the creation of high efficiency dual-junction solar cells on low cost and light weight Si wafers and would also enable a path for yellow and green light emission devices on a Si platform. Our work focused on the materials integration problems for multiple pathways to integrate GaAsP alloys on Si substrates. We first addressed the direct integration of GaAsP alloys on Si substrates. Our results showed that despite the low lattice-mismatch conditions at the P-rich end of the GaAsP alloy spectrum, it was difficult to achieve thin films low defect density. We proceeded to focus on the integration of GaAsP alloys on Si via the use of SiGe compositionally graded layers. Through a combination of methods we addressed problems related to antiphase disorder and lattice mismatch between GaAsP and SiGe materials system. We demonstrated the epitaxial growth lattice-matched GaAsP on Si₀.₈₈Ge₀.₁₂, Si₀.₅Ge₀.₅, Si₀.₄Ge₀.₆ and Si₀.₃Ge₀.₇ virtual substrates with excellent interface properties. Our studies showed the effects of initiation conditions and intentional strain at the GaAsP/SiGe heterovalent interface. We have established strain-engineering methods at the GaAsP/SiGe heterovalent interface to prevent dislocation loop nucleation and expansion. We were able to attain GaAsP films on Si with a threading dislocation density as low as 1.2x10⁶/cm² . Our GaAsP/SiGe heterovalent interface research advanced the understanding of such structures. We developed methods to fabricate optimized GaAsP tunnel junction film, which would be necessary for any current-matched dual junction solar cell design. Prototype dual-junction GaAsP/Si solar cell test devices showed good preliminary performance characteristics and offer great promise for future devices integrated with the newly developed high quality GaAsP/Si virtual substrates.
by Prithu Sharma.
Ph. D.
Andre, Carrie L. « III-V semiconductors on SiGe substrates for multi-junction photovoltaics ». The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1100290985.
Texte intégralKraft, Achim [Verfasser], et Holger [Akademischer Betreuer] Reinecke. « Plated copper front side metallization on printed seed-layers for silicon solar cells ». Freiburg : Universität, 2015. http://d-nb.info/111945252X/34.
Texte intégralMartin, de Nicolas Silvia. « a-Si : H/c-Si heterojunction solar cells : back side assessment and improvement ». Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112253/document.
Texte intégralAmongst available silicon-based photovoltaic technologies, a-Si:H/c-Si heterojunctions (HJ) have raised growing attention because of their potential for further efficiency improvement and cost reduction. In this thesis, research on n-type a-Si:H/c-Si heterojunction solar cells developed at the Institute National de l’Énergie Solaire is presented. Technological and physical aspects of HJ devices are reviewed, with the focus on the comprehension of the back side role. Then, an extensive work to optimise amorphous layers used at the rear side of our devices as well as back contact films is addressed. Through the development and implementation of high-quality intrinsic and n-doped a-Si:H films on HJ solar cells, the needed requirements at the back side of devices are established. A comparison between different back surface fields (BSF) with and without the inclusion of a buffer layer is presented and resulting solar cell output characteristics are discussed. A discussion on the back contact of HJ solar cells is also presented. A new back TCO approach based on boron-doped zinc oxide (ZnO:B) layers is studied. With the aim of developing high-quality ZnO:B layers well-adapted to their use in HJ devices, different deposition parameters as well as post-deposition treatments such as post-hydrogen plasma or excimer laser annealing are studied, and their influence on solar cells is assessed. Throughout this work it is evidenced that the back side of HJ solar cells plays an important role on the achievement of high efficiencies. However, the enhancement of the overall device performance due to the back side optimisation is always dependent on phenomena taking place at the front side of devices. The use of the optimised back side layers developed in this thesis, together with improved front side layers and a novel metallisation approach have permitted a record conversion efficiency over 22%, thus demonstrating the great potential of this technology
Cousins, Michael Andrew. « Microstructure of absorber layers in CdTe/Cds solar cells ». Thesis, Durham University, 2001. http://etheses.dur.ac.uk/4266/.
Texte intégralBartsch, Jonas [Verfasser]. « Advanced Front Side Metallization for Crystalline Silicon Solar Cells with Electrochemical Techniques / Jonas Bartsch ». München : Verlag Dr. Hut, 2012. http://d-nb.info/1020298839/34.
Texte intégralBenick, Jan [Verfasser]. « High-Efficiency n-Type Solar Cells with a Front Side Boron Emitter / Jan Benick ». München : Verlag Dr. Hut, 2011. http://d-nb.info/1013526287/34.
Texte intégralGonzalez, Maria. « Electronic Defects of III-V Compound Semiconductor Materials Grown on Metamorphic SiGe Substrates for Photovoltaic Applications ». The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250703650.
Texte intégralLivres sur le sujet "SiGe SOLAR CELLS"
Office, General Accounting. Department of Energy : Solar and Renewable Resources Technologies Program : report to the Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives. Washington, D.C : The Office, 1997.
Trouver le texte intégralOffice, General Accounting. Department of Energy : Alternative financing and contracting strategies for cleanup projects : report to the Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013) : U.S. General Accounting Office, 1998.
Trouver le texte intégralOffice, General Accounting. Department of Energy : Poor property management allowed vulnerability to theft at Rocky Flats : report to Congressional requesters. Washington, D.C : U.S. General Accounting Office, 1995.
Trouver le texte intégralOffice, General Accounting. Department of Energy : DOE needs to improve controls over foreign visitors to weapons laboratories : report to the Committee on National Security, House of Representatives. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013) : The Office, 1997.
Trouver le texte intégralOffice, General Accounting. Department of Energy : Clear strategy on external regulation needed for worker and nuclear facility safety : report to the Committee on Science, House of Representatives. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013) : The Office, 1998.
Trouver le texte intégralOffice, General Accounting. Department of Energy : National security controls over contractors traveling to foreign countries need strengthening : report to Congressional requesters. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013) : U.S. General Accounting Office, 2000.
Trouver le texte intégralOffice, General Accounting. Department of Energy : Fundamental reassessment needed to address major mission, structure, and accountability problems : report to the Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives. Washington, D.C : GAO, 2001.
Trouver le texte intégralOffice, General Accounting. Department of Energy : National priorities needed for meeting environmental agreements : report to the Secretary of Energy. Washington, D.C : U.S. General Accounting Office, 1995.
Trouver le texte intégralOffice, General Accounting. Department of Energy : Information on DOE's human tissue analysis work : fact sheet for Congressional requesters. Washington, D.C : U.S. General Accounting Office, 1995.
Trouver le texte intégralOffice, General Accounting. Department of Energy : Savings from deactivating facilities can be better estimated : report to the Chairman, Subcommittee on Military Procurement, Committee on National Security, House of Representatives. Washington, D.C : U.S. General Accounting Office, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "SiGe SOLAR CELLS"
Peters, Marius, Hubert Hauser, Benedikt Bläsi, Matthias Kroll, Christian Helgert, Stephan Fahr, Samuel Wiesendanger et al. « Rear Side Diffractive Gratings for Silicon Wafer Solar Cells ». Dans Photon Management in Solar Cells, 49–90. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665662.ch3.
Texte intégralLi, Q., D. Wu et W. Gao. « Insights into the Size Effect of the Dynamic Characteristics of the Perovskite Solar Cell ». Dans Lecture Notes in Civil Engineering, 353–57. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_37.
Texte intégralSchütt, A., O. Lupan et R. Adelung. « Aluminium-BSF Versus PERC Solar Cells : Study of Rear Side Passivation Quality and Diffusion Length ». Dans IFMBE Proceedings, 745–48. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_132.
Texte intégralPopovich, V. A., M. Janssen, I. J. Bennett et I. M. Richardson. « Microstructure and Mechanical Properties of a Screen-Printed Silver Front Side Solar Cell Contact ». Dans EPD Congress 2015, 265–72. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093503.ch31.
Texte intégralPopovich, V. A., M. Janssen, I. J. Bennett et I. M. Richardson. « Microstructure and Mechanical Properties of a Screen-Printed Silver Front Side Solar Cell Contact ». Dans EPD Congress 2015, 265–72. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48214-9_31.
Texte intégralRaimondi, Alberto, et Laura Rosini. « Adaptive “Velari” ». Dans The Urban Book Series, 783–99. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_70.
Texte intégralNadtochiy, Andriy, Artem Podolian, Oleg Korotchenkov et Viktor Schlosser. « Ultrasonic Processing of Si and SiGe for Photovoltaic Applications ». Dans Solar Cells [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96939.
Texte intégral« Selected Applications of Nanomaterials ». Dans Nanoscopic Materials : Size-Dependent Phenomena and Growth Principles, 369–419. 2e éd. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781849739078-00369.
Texte intégralPandya, Ankur, Vishal Sorathiya et Sunil Lavadiya. « Graphene-Based Nanophotonic Devices ». Dans Recent Advances in Nanophotonics - Fundamentals and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93853.
Texte intégral« Quantum Dots ». Dans Exploring Materials through Patent Information, 39–53. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781782621126-00039.
Texte intégralActes de conférences sur le sujet "SiGe SOLAR CELLS"
Yun, S., Kwang Hoon Jung, Jung Wook Lim et Sun Jin Yun. « Substrate-Type Hydrogenated Amorphous SiGe Thin Film Solar Cells with Ge-Graded SiGe Layers on Opaque Substrates ». Dans ISES Solar World Congress 2015. Freiburg, Germany : International Solar Energy Society, 2016. http://dx.doi.org/10.18086/swc.2015.05.10.
Texte intégralTobail, Osama, Jeehwan Kim et Devendra Sadana. « Optimization of a-SiGe solar cells for tandem structures ». Dans 2010 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications (ThETA). IEEE, 2010. http://dx.doi.org/10.1109/theta.2010.5766413.
Texte intégralDiaz, Martin, Li Wang, Andrew Gerger, Anthony Lochtefeld, Chris Ebert, Robert Opila, Ivan Perez-Wurfl et Allen Barnett. « Dual-junction GaAsP/SiGe on silicon tandem solar cells ». Dans 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925042.
Texte intégralWang, Yi, Xuesong Lu, Susan R. Huang, Xiaoting Wang, Bobert Opila et Allen Barnett. « Heteroepitaxial growth of SiGe on Si by LPE for high efficiency solar cells ». Dans 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411424.
Texte intégralCano, Pablo, Manuel Hinojosa, Luis Cifuentes, Huy Nguyen, Aled Morgan, David Fuertes Marron, Ivan Garcia, Andrew Johnson et Ignacio Rey-Stolle. « Hybrid III-V/SiGe solar cells on Si substrates and porous Si substrates ». Dans 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8981138.
Texte intégralSato, Shin-ichiro, Kevin Beernink et Takeshi Ohshima. « Charged particle radiation effects on flexible a-Si/a-SiGe/a-SiGe triple junction solar cells for space use ». Dans 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) PART 2. IEEE, 2013. http://dx.doi.org/10.1109/pvsc-vol2.2013.7179251.
Texte intégralFerhati, H., F. Djeffal, K. Kacha et D. Arar. « High efficiency amorphous triple-junction thin-film SiGe solar cells incorporating multi-trench region ». Dans 2015 4th International Conference on Systems and Control (ICSC). IEEE, 2015. http://dx.doi.org/10.1109/icosc.2015.7153273.
Texte intégralSchmieder, Kenneth J., Andrew Gerger, Ziggy Pulwin, Li Wang, Martin Diaz, Michael Curtin, Chris Ebert, Anthony Lochtefeld, Robert L. Opila et Allen Barnett. « GaInP window layers for GaAsP on SiGe/Si single and dual-junction solar cells ». Dans 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744974.
Texte intégralFan, Qi Hua, Guofu Hou, Xianbo Liao, Xianbi Xiang, Changyong Chen, William Ingler, Nirupama Adiga et al. « High rate deposition of a-Si and a-SiGe solar cells near depletion condition ». Dans 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614457.
Texte intégralFan, Qi Hua, Xianbo Liao, Changyong Chen, Xianbi Xiang, Guofu Hou, William Ingler, Nirupama Adiga et al. « Numerical simulation and experimental investigation of a-Si/a-SiGe tandem junction solar cells ». Dans 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5617031.
Texte intégralRapports d'organisations sur le sujet "SiGe SOLAR CELLS"
Xu, Baomin. Novel Approach for Selective Emitter Formation and Front Side Metallization of Crystalline Silicon Solar Cells. Office of Scientific and Technical Information (OSTI), juillet 2010. http://dx.doi.org/10.2172/983937.
Texte intégral