Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Signal processing applications.

Articles de revues sur le sujet « Signal processing applications »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Signal processing applications ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Jin Chen, Huai Li, Kaihua Sun, and B. Kim. "Signal processing applications - How will bioinformatics impact signal processing research?" IEEE Signal Processing Magazine 20, no. 6 (2003): 16–26. http://dx.doi.org/10.1109/msp.2003.1253551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Hanbo. "Compressed Sensing: Theory and Applications." Journal of Physics: Conference Series 2419, no. 1 (2023): 012042. http://dx.doi.org/10.1088/1742-6596/2419/1/012042.

Texte intégral
Résumé :
Abstract Compressed sensing is a new technique for solving underdetermined linear systems. Because of its good performance, it has been widely used in academia. It is applied in electrical engineering to recover sparse signals, especially in signal processing. This technique exploits the signal’s sparse nature, allowing the original signals to recover from fewer samples. This paper discusses the fundamentals of compressed sensing theory, the research progress in compressed sensing signal processing, and the applications of compressed sensing theory in nuclear magnetic resonance imaging and seismic exploration acquisition. Compressed sensing allows for the digitization of analogue data with inexpensive sensors and lowers the associated costs of processing, storage, and transmission. Behind its sophisticated mathematical expression, compressed sensing theory contains a subtle idea. Compressed sensing is a novel theory that is an ideal complement and improvement to conventional signal processing. It is a theory with a high vitality level, and its research outcomes may substantially influence signal processing and other fields.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bourennane, Salah, Julien Marot, Caroline Fossati, Ahmed Bouridane, and Klaus Spinnler. "Multidimensional Signal Processing and Applications." Scientific World Journal 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/365126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cruz, J. "Applications of digital signal processing." IEEE Transactions on Acoustics, Speech, and Signal Processing 33, no. 2 (1985): 487. http://dx.doi.org/10.1109/tassp.1985.1164563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Duarte Ortigueira, Manuel, and J. A. Tenreiro Machado. "Fractional signal processing and applications." Signal Processing 83, no. 11 (2003): 2285–86. http://dx.doi.org/10.1016/s0165-1684(03)00181-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ortigueira, Manuel D., Clara M. Ionescu, J. Tenreiro Machado, and Juan J. Trujillo. "Fractional signal processing and applications." Signal Processing 107 (February 2015): 197. http://dx.doi.org/10.1016/j.sigpro.2014.10.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tibbitts, J., and Yibin Lu. "Forensic applications of signal processing." IEEE Signal Processing Magazine 26, no. 2 (2009): 104–11. http://dx.doi.org/10.1109/msp.2008.931099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pankaj, Kumar Sinha, and Sharan Preetha. "Multiplexer Based Multiplications for Signal Processing Applications." Indonesian Journal of Electrical Engineering and Computer Science 9, no. 3 (2018): 583–86. https://doi.org/10.11591/ijeecs.v9.i3.pp583-586.

Texte intégral
Résumé :
In signal processing, Filter is a device that removes the unwanted signals. In any electronic circuits, Filters are widely used in the fundamental hands on tool. The basic function of the filter is to selectively allow the desired signal to pass through and /or control the undesired signal based on the frequency. A signal processing filter satisfies a set of requirements which are realization and improvement of the filter. A filter system consists of an analog to digital converter is used to sample the input signal, traced by a microprocessor and some components such as memory to store the data and filter coefficients. Filters can easily be designed to be ―linear phase‖ and it is easy to implement. In this paper, the birecoder multiplier (BM) is designed in terms of VLSI design environment. The proposed multiplier is implemented by using VHDL language and Xilinx ISE for synthesis. The multiplier is mainly used for image processing applications as well as signal processing applications.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sinha, Pankaj Kumar, and Preetha Sharan. "Multiplexer Based Multiplications for Signal Processing Applications." Indonesian Journal of Electrical Engineering and Computer Science 9, no. 3 (2018): 583. http://dx.doi.org/10.11591/ijeecs.v9.i3.pp583-586.

Texte intégral
Résumé :
<p>In signal processing, Filter is a device that removes the unwanted signals. In any electronic circuits, Filters are widely used in the fundamental hands on tool. The basic function of the filter is to selectively allow the desired signal to pass through and /or control the undesired signal based on the frequency. A signal processing filter satisfies a set of requirements which are realization and improvement of the filter. A filter system consists of an analog to digital converter is used to sample the input signal, traced by a microprocessor and some components such as memory to store the data and filter coefficients. Filters can easily be designed to be “linear phase” and it is easy to implement. In this paper, the birecoder multiplier (BM) is designed in terms of VLSI design environment. The proposed multiplier is implemented by using VHDL language and Xilinx ISE for synthesis. The multiplier is mainly used for image processing applications as well as signal processing applications.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kandle. "A Systolic Signal Processor for Signal-Processing Applications." Computer 20, no. 7 (1987): 94–95. http://dx.doi.org/10.1109/mc.1987.1663626.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Cruces, Sergio, Rubén Martín-Clemente, and Wojciech Samek. "Information Theory Applications in Signal Processing." Entropy 21, no. 7 (2019): 653. http://dx.doi.org/10.3390/e21070653.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Sullivan, Francis J. M., H. Briscoe, R. Estrada, and E. Schmidt. "BBN Butterfly applications to signal processing." Journal of the Acoustical Society of America 78, S1 (1985): S80. http://dx.doi.org/10.1121/1.2023010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mitsukura, Yasue. "EEG Signal Processing for Real Applications." Journal of Signal Processing 20, no. 1 (2016): 1–7. http://dx.doi.org/10.2299/jsp.20.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ferguson, Brian G. "Defense Applications of Acoustic Signal Processing." Acoustics Today 15, no. 1 (2019): 10. http://dx.doi.org/10.1121/at.2019.15.1.12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tuan Do-Hong and P. Russer. "Signal processing for wideband array applications." IEEE Microwave Magazine 5, no. 1 (2004): 57–67. http://dx.doi.org/10.1109/mmw.2004.1284944.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Morawski, Roman Z. "Spectrophotometric applications of digital signal processing." Measurement Science and Technology 17, no. 9 (2006): R117—R144. http://dx.doi.org/10.1088/0957-0233/17/9/r01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Shamsunder, S. "Signal Processing Applications Of The Bootstrap." IEEE Signal Processing Magazine 15, no. 1 (1998): 38. http://dx.doi.org/10.1109/msp.1998.647041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tran, Yvonne. "EEG Signal Processing for Biomedical Applications." Sensors 22, no. 24 (2022): 9754. http://dx.doi.org/10.3390/s22249754.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhao, Yifan, Fei He, and Yuzhu Guo. "EEG Signal Processing Techniques and Applications." Sensors 23, no. 22 (2023): 9056. http://dx.doi.org/10.3390/s23229056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Volić, Ismar. "Topological Methods in Signal Processing." B&H Electrical Engineering 14, s1 (2020): 14–25. http://dx.doi.org/10.2478/bhee-2020-0002.

Texte intégral
Résumé :
Abstract This article gives an overview of the applications of algebraic topology methods in signal processing. We explain how the notions and invariants such as (co)chain complexes and (co)homology of simplicial complexes can be used to gain insight into higher-order interactions of signals. The discussion begins with some basic ideas in classical circuits, continues with signals over graphs and simplicial complexes, and culminates with an overview of sheaf theory and the connections between sheaf cohomology and signal processing.
Styles APA, Harvard, Vancouver, ISO, etc.
21

B, Nagesh, and Dr M. Uttara Kumari. "A Review on Machine Learning for Audio Applications." Journal of University of Shanghai for Science and Technology 23, no. 07 (2021): 62–70. http://dx.doi.org/10.51201/jusst/21/06508.

Texte intégral
Résumé :
Audio processing is an important branch under the signal processing domain. It deals with the manipulation of the audio signals to achieve a task like filtering, data compression, speech processing, noise suppression, etc. which improves the quality of the audio signal. For applications such as natural language processing, speech generation, automatic speech recognition, the conventional algorithms aren’t sufficient. There is a need for machine learning or deep learning algorithms which can be implemented so that the audio signal processing can be achieved with good results and accuracy. In this paper, a review of the various algorithms used by researchers in the past has been described and gives the appropriate algorithm that can be used for the respective applications.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Mao, Hongquan. "Advancements in Filter Technology: Evolution and Applications." Highlights in Science, Engineering and Technology 97 (May 28, 2024): 112–16. http://dx.doi.org/10.54097/603hn182.

Texte intégral
Résumé :
This paper explores the historical trajectory and contemporary applications of signal processing filters. From the early days of analog filters to the current digital era, the paper traces their evolution, emphasizing key developments in active RC filters, monolithic integrated op amps, and the transition to switched-capacitor and continuous-time filters. Fundamentals of analog and digital filters are outlined, distinguishing their processing of continuous-time and discrete-time signals. The classification of filters, including low-pass, high-pass, band-pass, and band-stop, is discussed with insights into their specific applications. The paper delves into crucial applications in audio processing, video processing, communication systems, power management, and sensor signal processing, showcasing filters' pivotal role in enhancing signal quality across diverse fields. Addressing emerging technologies, the paper highlights adaptive and deep learning filters, projecting the future trends in filter technology. It anticipates developments in analog integrated filters, emphasizing the growing significance of integrated circuits technology. This comprehensive review aims to deepen readers' understanding and inspire continued innovation in signal processing.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Rajesh Kumar Upadhyay. "Digital Signal Processing: From Theory to Practical Applications." Tuijin Jishu/Journal of Propulsion Technology 44, no. 4 (2023): 2311–17. http://dx.doi.org/10.52783/tjjpt.v44.i4.1230.

Texte intégral
Résumé :
Digital Signal Processing (DSP) is a vital technology that bridges the gap between theoretical principles and practical applications in the digital age. This article explores the core components of DSP, emphasizing its theoretical foundations based on mathematical concepts like Fourier analysis, discrete-time signals, and the Nyquist theorem. It further delves into the practical applications of DSP, showcasing its extensive use in audio processing, image manipulation, telecommunications, biomedical diagnostics, and more. The article also outlines the challenges and future directions for DSP, including its integration with machine learning, quantum signal processing, and the development of efficient hardware solutions. DSP's potential in emerging fields like biological signal processing, data privacy, and sustainability is discussed, reflecting the ever-evolving nature of this technology. In conclusion, DSP is not just a technology but a dynamic force that continually reshapes our world by enhancing the quality of life, advancing science, and addressing global challenges.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Simić, Igor, and Aleksa Zejak. "SAW devices and its signal processing applications." Vojnotehnicki glasnik 47, no. 6 (1999): 50–59. http://dx.doi.org/10.5937/vojtehg9904050s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wang, Zhao, Eng Gee Lim, Yujun Tang, and Mark Leach. "Medical Applications of Microwave Imaging." Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/147016.

Texte intégral
Résumé :
Ultrawide band (UWB) microwave imaging is a promising method for the detection of early stage breast cancer, based on the large contrast in electrical parameters between malignant tumour tissue and the surrounding normal breast-tissue. In this paper, the detection and imaging of a malignant tumour are performed through a tomographic based microwave system and signal processing. Simulations of the proposed system are performed and postimage processing is presented. Signal processing involves the extraction of tumour information from background information and then image reconstruction through the confocal method delay-and-sum algorithms. Ultimately, the revision of time-delay and the superposition of more tumour signals are applied to improve accuracy.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Permana, Roni, W. S. Mada Sanjaya, and Hasniah Aliah. "Implementation of Adaptive Neural Fuzzy Inference Systems (Anfis) For Speech Recognition Applications In Smart Home Control." TIME in Physics 2, no. 2 (2024): 77–84. https://doi.org/10.11594/timeinphys.2024.v2i2p77-84.

Texte intégral
Résumé :
Signal Processing is signal processing that is related to the presentation, transformation, and manipulation of signal content and information. Digital Signal Processing is signal processing that is related to the presentation, transformation, and manipulation of signal content and information in digital form. The speech control system is very efficient. Speech signals are signals that change over time at a relatively slow speed. If observed at short intervals (between 5 and 100 miles per second), the practical characteristics are constant, but if observed at longer intervals, the characteristics appear to change according to the sentences spoken. This study uses the signal pattern recognition method with the MFCC and ANFIS methods as learning. The performance results of the entire system obtained an accuracy value with 6 feature extractions in 2 respondents, namely 65% ​​-72.5% and the smarthome control system worked well.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Erskine, R. L. "Signal processing." Chemometrics and Intelligent Laboratory Systems 2, no. 1-3 (1987): 6–8. http://dx.doi.org/10.1016/0169-7439(87)80079-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Aziz, Ashraf. "Applications of Signal Processing in Genomic Research." International Conference on Electrical Engineering 7, no. 7 (2010): 1–17. http://dx.doi.org/10.21608/iceeng.2010.32972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Mostafa, M., Fathy Ahmed, and Aly Attallah. "Modern Signal Processing Techniques for GPR Applications." Journal of Engineering Science and Military Technologies 17, no. 17th International Conference (2017): 1–9. http://dx.doi.org/10.21608/ejmtc.2017.21123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Wilkinson, A. J. "Digital Signal Processing: Principles, Devices and Applications." Computing & Control Engineering Journal 2, no. 5 (1991): 216. http://dx.doi.org/10.1049/cce:19910058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Creasey, D. J. "Digital Signal Processing: Principles, Devices and Applications." IEE Review 36, no. 7 (1990): 275. http://dx.doi.org/10.1049/ir:19900116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Behrens, R. T., and L. L. Scharf. "Signal processing applications of oblique projection operators." IEEE Transactions on Signal Processing 42, no. 6 (1994): 1413–24. http://dx.doi.org/10.1109/78.286957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ortega, Antonio, Pascal Frossard, Jelena Kovacevic, Jose M. F. Moura, and Pierre Vandergheynst. "Graph Signal Processing: Overview, Challenges, and Applications." Proceedings of the IEEE 106, no. 5 (2018): 808–28. http://dx.doi.org/10.1109/jproc.2018.2820126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Joachim, Dale, and J. R. Deller. "Some Signal Processing Applications of Set Solutions." IFAC Proceedings Volumes 33, no. 15 (2000): 1001–6. http://dx.doi.org/10.1016/s1474-6670(17)39884-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Katsikas, Sokratis K., and Demetrios G. Lainiotis. "Lainiotis filters applications in seismic signal processing." Nonlinear Analysis: Theory, Methods & Applications 30, no. 4 (1997): 2385–95. http://dx.doi.org/10.1016/s0362-546x(97)00281-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Popescu, Theodor D. "Introduction to statistical signal processing with applications." Control Engineering Practice 4, no. 10 (1996): 1484. http://dx.doi.org/10.1016/s0967-0661(96)90047-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Nandi, Asoke K., and Rangaraj M. Rangayyan. "Special issue: Medical applications of signal processing." Journal of the Franklin Institute 344, no. 3-4 (2007): 153. http://dx.doi.org/10.1016/j.jfranklin.2006.12.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Allen, Alastair. "Acousto-optic signal processing: Fundamentals and applications." Optics & Laser Technology 25, no. 3 (1993): 211–12. http://dx.doi.org/10.1016/0030-3992(93)90083-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Jarske, Petri. "Introductory digital signal processing with computer applications." Signal Processing 21, no. 3 (1990): 283. http://dx.doi.org/10.1016/0165-1684(90)90094-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wilson, B. "Digital signal processing applications for hearing accessibility." IEEE Signal Processing Magazine 20, no. 5 (2003): 14–18. http://dx.doi.org/10.1109/msp.2003.1236769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Baura, G. D. "Listen to your data [signal processing applications]." IEEE Signal Processing Magazine 21, no. 1 (2004): 21–25. http://dx.doi.org/10.1109/msp.2004.1267045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Bradski, G., and A. Kaehler. "Robot-Vision Signal Processing Primitives [Applications Corner]." IEEE Signal Processing Magazine 25, no. 1 (2008): 130–33. http://dx.doi.org/10.1109/msp.2008.4408449.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Pollak, Ilya. "Incorporating Financial Applications in Signal Processing Curricula." IEEE Signal Processing Magazine 28, no. 5 (2011): 122–25. http://dx.doi.org/10.1109/msp.2011.941844.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rabenstein, Rudolf, and Jörg Velten. "Special issue on multidimensional signal processing applications." Multidimensional Systems and Signal Processing 25, no. 2 (2014): 245–46. http://dx.doi.org/10.1007/s11045-013-0272-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mostafa, M., Fathy Ahmed, and Aly Attallah. "Modern Signal Processing Techniques for GPR Applications." International Conference on Aerospace Sciences and Aviation Technology 17, AEROSPACE SCIENCES (2017): 1–9. http://dx.doi.org/10.21608/asat.2017.22383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Shulman, D. "Synchronous SRAM for digital signal processing applications." Electronics Letters 33, no. 7 (1997): 562. http://dx.doi.org/10.1049/el:19970366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

McGrath, Donald T. "Signal processing considerations in power management applications." Digital Signal Processing 1, no. 4 (1991): 245–50. http://dx.doi.org/10.1016/1051-2004(91)90116-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Silverman, Jason, Gail L. Rosen, and Steve Essinger. "Applications in Digital Image Processing." Mathematics Teacher 107, no. 1 (2013): 46–53. http://dx.doi.org/10.5951/mathteacher.107.1.0046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Iwami, Takahiro, and Akira Omoto. "Signal processing applications for sound field measurements using instantaneous array input." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, no. 1 (2023): 7056–65. http://dx.doi.org/10.3397/in_2023_1055.

Texte intégral
Résumé :
Most existing acoustic signal processing techniques have been developed in the frequency domain. These techniques are suitable for single-frequency signals, but most actual sound fields are wideband. To apply frequency-domain techniques to wideband signals, it is necessary to wait the time required for processing before performing the discrete Fourier transform, and then apply processing to each frequency bin. This study describes acoustic signal processing techniques using the instantaneous input of a microphone array are described. These techniques are suitable for real-time implementation because they avoid the above disadvantages. The limitations and disadvantages of methods using only instantaneous information are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Nash, J. Greg. "Concurrent VLSI architectures for image and signal processing: Applications in image and signal processing." IEEE Potentials 5, no. 2 (1986): 12–14. http://dx.doi.org/10.1109/mp.1986.6500826.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!