Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Signal processing Data processing.

Articles de revues sur le sujet « Signal processing Data processing »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Signal processing Data processing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Stevens, N. "Processing of sar data: fundamentals, signal processing, interferometry." Photogrammetric Record 19, no. 108 (December 2004): 419–20. http://dx.doi.org/10.1111/j.0031-868x.2004.295_5.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xing, Mengdao, Zhong Lu, and Hanwen Yu. "InSAR Signal and Data Processing." Sensors 20, no. 13 (July 7, 2020): 3801. http://dx.doi.org/10.3390/s20133801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

I. S. Amiri, I. S. Amiri, and J. Ali J. Ali. "Data signal processing via manchester coding-decoding method using chaotic signals generated by PANDA ring resonator." Chinese Optics Letters 11, no. 4 (2013): 041901–41904. http://dx.doi.org/10.3788/col201311.041901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wei, Bo, Kai Li, Chengwen Luo, Weitao Xu, Jin Zhang, and Kuan Zhang. "No Need of Data Pre-processing." ACM Transactions on Internet of Things 2, no. 4 (November 30, 2021): 1–26. http://dx.doi.org/10.1145/3467980.

Texte intégral
Résumé :
Device-free context awareness is important to many applications. There are two broadly used approaches for device-free context awareness, i.e., video-based and radio-based. Video-based approaches can deliver good performance, but privacy is a serious concern. Radio-based context awareness applications have drawn researchers' attention instead, because it does not violate privacy and radio signal can penetrate obstacles. The existing works design explicit methods for each radio-based application. Furthermore, they use one additional step to extract features before conducting classification and
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shelishiyah, R., M. Bharani Dharan, T. Kishore Kumar, R. Musaraf, and Thiyam Deepa Beeta. "Signal Processing for Hybrid BCI Signals." Journal of Physics: Conference Series 2318, no. 1 (August 1, 2022): 012007. http://dx.doi.org/10.1088/1742-6596/2318/1/012007.

Texte intégral
Résumé :
Abstract The brain signals can be converted to a command to control some external device using a brain-computer interface system. The unimodal BCI system has limitations like the compensation of the accuracy with the increase in the number of classes. In addition to this many of the acquisition systems are not robust for real-time application because of poor spatial or temporal resolution. To overcome this, a hybrid BCI technology that combines two acquisition systems has been introduced. In this work, we have discussed a preprocessing pipeline for enhancing brain signals acquired from fNIRS (
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yamamoto, Yutaka, Kaoru Yamamoto, Masaaki Nagahara, and Pramod P. Khargonekar. "Signal processing via sampled-data control theory." Impact 2020, no. 2 (April 15, 2020): 6–8. http://dx.doi.org/10.21820/23987073.2020.2.6.

Texte intégral
Résumé :
Digital sounds and images are used everywhere today, and they are all generated originally by analogue signals. On the other hand, in digital signal processing, the storage or transmission of digital data, such as music, videos or image files, necessitates converting such analogue signals into digital signals via sampling. When these data are sampled, the values from the discrete, sampled points are kept while the information between the sampled points is lost. Various techniques have been developed over the years to recover this lost data, but the results remain incomplete. Professor Yutaka Y
Styles APA, Harvard, Vancouver, ISO, etc.
7

Berroth, M., V. Hurm, M. Lang, Z. Lao, A. Thiede, Z. G. Wang, A. Bangert, et al. "Hemt circuits for signal/data processing." Solid-State Electronics 41, no. 10 (October 1997): 1407–12. http://dx.doi.org/10.1016/s0038-1101(97)00083-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chakrabarti, Satyananda, Donald E. Shaw, Dale E. Stephenson, and B. V. K. Vijaya Kumar. "Digital Signal Processing of Geotechnical Data." Journal of Engineering Mechanics 112, no. 1 (January 1986): 70–83. http://dx.doi.org/10.1061/(asce)0733-9399(1986)112:1(70).

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Müller-Trapet, Markus, and Michael Vorländer. "Signal processing for hemispherical measurement data." Journal of the Acoustical Society of America 133, no. 5 (May 2013): 3525. http://dx.doi.org/10.1121/1.4806341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Grydeland, T., F. D. Lind, P. J. Erickson, and J. M. Holt. "Software Radar signal processing." Annales Geophysicae 23, no. 1 (January 31, 2005): 109–21. http://dx.doi.org/10.5194/angeo-23-109-2005.

Texte intégral
Résumé :
Abstract. Software infrastructure is a growing part of modern radio science systems. As part of developing a generic infrastructure for implementing Software Radar systems, we have developed a set of reusable signal processing components. These components are generic software-based implementations for use on general purpose computing systems. The components allow for the implementation of signal processing chains for radio frequency signal reception, correlation-based data processing, and cross-correlation-based interferometry. The components have been used to implement the signal processing n
Styles APA, Harvard, Vancouver, ISO, etc.
11

Courcier, Thierry, Patrick Pittet, Paul G. Charette, Vincent Aimez, and Guo Neng Lu. "BQJ Photodetector Signal Processing." Key Engineering Materials 605 (April 2014): 91–94. http://dx.doi.org/10.4028/www.scientific.net/kem.605.91.

Texte intégral
Résumé :
We propose a signal processing method for the CMOS Buried Quad Junction (BQJ) photodetector employed for multi-label fluorescence detection. It serves to quantify label components in an arbitrary mixture with improved signal-to-noise ratio. The proposed method includes least squares optimization and statistical data preprocessing based on Principal Component Analysis (PCA). The method was applied to the BQJ as well as to Buried Double Junction (BDJ) and Buried Triple Junction (BTJ) detectors. The obtained results show that BQJ case achieves best accuracy in label quantification compared to BDJ
Styles APA, Harvard, Vancouver, ISO, etc.
12

Le Guernic, P., A. Benveniste, P. Bournai, and T. Gautier. "Signal--A data flow-oriented language for signal processing." IEEE Transactions on Acoustics, Speech, and Signal Processing 34, no. 2 (April 1986): 362–74. http://dx.doi.org/10.1109/tassp.1986.1164809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Amin, Farhan, Omar M. Barukab, and Gyu Sang Choi. "Big Data Analytics Using Graph Signal Processing." Computers, Materials & Continua 74, no. 1 (2023): 489–502. http://dx.doi.org/10.32604/cmc.2023.030615.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Staszewski, W. J., and Karen M. Holford. "Wavelet Signal Processing of Acoustic Emission Data." Key Engineering Materials 204-205 (April 2001): 351–58. http://dx.doi.org/10.4028/www.scientific.net/kem.204-205.351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Changyou Guo. "Radar Signal Processing Algorithm Using Data Filter." Journal of Convergence Information Technology 6, no. 6 (June 30, 2011): 376–82. http://dx.doi.org/10.4156/jcit.vol6.issue6.38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Cull, J. P. "Signal Processing Concepts for Airborne Sirotem Data." Exploration Geophysics 22, no. 1 (March 1991): 97–100. http://dx.doi.org/10.1071/eg991097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gust, Devens, Joakim Andréasson, Uwe Pischel, Thomas A. Moore, and Ana L. Moore. "Data and signal processing using photochromic molecules." Chem. Commun. 48, no. 14 (2012): 1947–57. http://dx.doi.org/10.1039/c1cc15329c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Conway, T., R. Conway, and S. Tosi. "Signal processing for multitrack digital data storage." IEEE Transactions on Magnetics 41, no. 4 (April 2005): 1333–39. http://dx.doi.org/10.1109/tmag.2005.845394.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gaudiot, J. L. "Data-driven multicomputers in digital signal processing." Proceedings of the IEEE 75, no. 9 (1987): 1220–34. http://dx.doi.org/10.1109/proc.1987.13875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Shtrauss, Vairis. "Digital signal processing for relaxation data conversion." Journal of Non-Crystalline Solids 351, no. 33-36 (September 2005): 2911–16. http://dx.doi.org/10.1016/j.jnoncrysol.2005.04.087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Baura, G. D. "Listen to your data [signal processing applications]." IEEE Signal Processing Magazine 21, no. 1 (January 2004): 21–25. http://dx.doi.org/10.1109/msp.2004.1267045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tianxing, Cai, and Cai Tianfang. "Signal Processing of High-Noisy Chaotic Data." Physica Scripta 61, no. 1 (January 1, 2000): 46–48. http://dx.doi.org/10.1238/physica.regular.061a00046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Baziw, Erick, and Gerald Verbeek. "Signal Processing Challenges When Processing DST and CST Seismic Data Containing TIRs." Geotechnical Testing Journal 37, no. 3 (March 24, 2014): 20130122. http://dx.doi.org/10.1520/gtj20130122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Serej, Michał, and Maria Skublewska - Paszkowska. "The methods of EMG data processing." Journal of Computer Sciences Institute 3 (March 30, 2017): 38–45. http://dx.doi.org/10.35784/jcsi.591.

Texte intégral
Résumé :
The article presents both the methods of data processing of electromyography (EMG), and EMG signal analysis using the implemented piece of software. This application is used to load the EMG signal stored in a file with the .C3D extension. The analysis was conducted in terms of the highest muscles activaton during exercise recorded with Motion Capture technique.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Barnes, Gary, and John Lumley. "Processing gravity gradient data." GEOPHYSICS 76, no. 2 (March 2011): I33—I47. http://dx.doi.org/10.1190/1.3548548.

Texte intégral
Résumé :
As the demand for high-resolution gravity gradient data increases and surveys are undertaken over larger areas, new challenges for data processing have emerged. In the case of full-tensor gradiometry, the processor is faced with multiple derivative measurements of the gravity field with useful signal content down to a few hundred meters’ wavelength. Ideally, all measurement data should be processed together in a joint scheme to exploit the fact that all components derive from a common source. We have investigated two methods used in commercial practice to process airborne full-tensor gravity g
Styles APA, Harvard, Vancouver, ISO, etc.
26

Roule, Petr, Ondřej Jakubov, Pavel Kovář, Petr Kařmařík, and František Vejražka. "Gnss Signal Processing in Gpu." Artificial Satellites 48, no. 2 (June 1, 2013): 51–61. http://dx.doi.org/10.2478/arsa-2013-0005.

Texte intégral
Résumé :
ABSTRACT Signal processing of the global navigation satellite systems (GNSS) is a computationally demanding task due to the wide bandwidth of the signals and their complicated modulation schemes. The classical GNSS receivers therefore utilize tailored digital signal processors (DSP) not being flexible in nature. Fortunately, the up-to-date parallel processors or graphical processing units (GPUs) dispose sufficient computational power for processing of not only relatively narrow band GPS L1 C/A signal but also the modernized GPS, GLONASS, Galileo and COMPASS signals. The performance improvement
Styles APA, Harvard, Vancouver, ISO, etc.
27

Timoshevskaya, Olga, Vladimir Londikov, Dmitry Andreev, Victor Samsonenkov, and Tatyana Klets. "DIGITAL DATA PROCESSING BASED ON WAVELET TRANSFORMS." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 2 (June 17, 2021): 174–80. http://dx.doi.org/10.17770/etr2021vol2.6634.

Texte intégral
Résumé :
The paper focuses on the main theoretical principles and properties of wavelet transforms. The problem of digital data processing based on wavelet transforms is considered. The analysis and processing of signals and functions that are non-stationary in time and inhomogeneous in space are presented. The authors propose methods of progressive coefficients’ values that combine wavelet decomposition and quantization, the main purpose of which is to convey the most important piece of information about a signal.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wu, Yunfeng, Sridhar Krishnan, and Behnaz Ghoraani. "Computational Methods for Physiological Signal Processing and Data Analysis." Computational and Mathematical Methods in Medicine 2022 (August 10, 2022): 1–4. http://dx.doi.org/10.1155/2022/9861801.

Texte intégral
Résumé :
Biomedical signal processing and data analysis play pivotal roles in the advanced medical expert system solutions. Signal processing tools are able to diminish the potential artifact effects and improve the anticipative signal quality. Data analysis techniques can assist in reducing redundant data dimensions and extracting dominant features associated with pathological status. Recent computational methods have greatly improved the effectiveness of signal processing and data analysis, to support the efficient point-of-care diagnosis and accurate medical decision-making. This editorial article h
Styles APA, Harvard, Vancouver, ISO, etc.
29

Qi, Fu Qiang, and Zong Tao Chi. "Data Acquisition and Processing Systems Based on LabVIEW." Applied Mechanics and Materials 602-605 (August 2014): 2736–39. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.2736.

Texte intégral
Résumé :
In order to collect and process data effectively, express the advantage of LabVIEW, this paper presents a design method for collecting and processing data in more channel using PXI-5922 and PXI-6733 based on LabVIEW. The system can realize two channel signals generation, data collection and signal analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Vogel, Ch, St Mendel, P. Singerl, and F. Dielacher. "Digital signal processing for data converters in mixed-signal systems." e & i Elektrotechnik und Informationstechnik 126, no. 11 (November 2009): 390–95. http://dx.doi.org/10.1007/s00502-009-0689-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhou, Zi Ping, Yu Zhu, and Tian Hao Wang. "The Application of Cross-Correlation Algorithm in CSAMT Received Data Processing." Advanced Materials Research 989-994 (July 2014): 2278–82. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2278.

Texte intégral
Résumé :
Controlled source audio-frequency magnetotelluric method (CSAMT) is an effective frequency domain detecting method in metallic ore exploration. In view of the weak response of a deep target signal and the serious measuring environmental noise,this paper proposes a method to deal with the noise of the CSAMT data based on the theory of cross-correlation algorithm. Emission signal current waveform recorder is designed to record signal parameters.According to cross-correlation technology, this paper uses the characteristics that correlation between emission and received signals is strong, yet the
Styles APA, Harvard, Vancouver, ISO, etc.
32

Rahman, S. M. "Constraint of Complex Trace Analysis for Seismic Data Processing." Journal of Scientific Research 3, no. 1 (December 19, 2010): 65. http://dx.doi.org/10.3329/jsr.v3i1.2106.

Texte intégral
Résumé :
Time frequency representation is a powerful tool for studying seismic reflection patterns and can thus provide useful information for stratification of the subsurface. Complex trace analysis, one of the geophysical techniques, is being employed for the time frequency analysis of seismic traces as analytic signal for the interpretation of seismic data. The applicability of the complex trace analysis in seismic data processing has been studied in this paper with few synthetic signals. The signals are analyzed with complex trace analysis for time frequency representations and compared with the sp
Styles APA, Harvard, Vancouver, ISO, etc.
33

Epishkin, D. V. "Improving magnetotelluric data processing methods." Moscow University Bulletin. Series 4. Geology, no. 4 (August 28, 2016): 40–46. http://dx.doi.org/10.33623/0579-9406-2016-4-40-46.

Texte intégral
Résumé :
A magnetotelluric data processing code has been developed, which demonstrates high robustness to intense electromagnetic noise occurring in measured MT data. Key features of the code are specific approach for estimating different transfer functions and capability to utilize all four channels acquired at remote reference station. The code utilizes various techniques to reduce estimate errors, including robust Huber estimator, jackknife approach, improved remote reference technique and compensating for overestimation of power spectra. The proposed code has shown high efficiency in processing of
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bernaschi, M., A. Di Lallo, A. Farina, R. Fulcoli, Emanuele Gallo, and L. Timmoneri. "Use of a graphics processing unit for passive radar signal and data processing." IEEE Aerospace and Electronic Systems Magazine 27, no. 10 (October 2012): 52–59. http://dx.doi.org/10.1109/maes.2012.6373912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Chen, Qunying. "Stepped Frequency Multiresolution Digital Signal Processing." Scientific Programming 2021 (June 8, 2021): 1–13. http://dx.doi.org/10.1155/2021/9081988.

Texte intégral
Résumé :
With the rapid development of radar industry technology, the corresponding signal processing technology becomes more and more complex. For the radar with short-range detection function, its corresponding signal mostly presents the characteristics of wide bandwidth and multiresolution. In the traditional data processing process, a large number of signals will interfere with the signal, which makes the final signal processing difficult or even impossible. Based on this problem, this paper proposes a principal component linear prediction processing algorithm based on clutter suppression processin
Styles APA, Harvard, Vancouver, ISO, etc.
36

Oxenlowe, L. K., Hua Ji, M. Galili, Minhao Pu, Hao Hu, H. C. H. Mulvad, K. Yvind, J. M. Hvam, A. T. Clausen, and P. Jeppesen. "Silicon Photonics for Signal Processing of Tbit/s Serial Data Signals." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 2 (March 2012): 996–1005. http://dx.doi.org/10.1109/jstqe.2011.2140093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Sorzano, C. O. S., M. A. Pérez-de-la-Cruz Moreno, F. R. Martín, C. Montejo, and A. Aguilar-Ros. "A Signal Processing Approach to Pharmacokinetic Data Analysis." Pharmaceutical Research 38, no. 4 (March 22, 2021): 625–35. http://dx.doi.org/10.1007/s11095-021-03000-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Bianchini Ciampoli, Luca, Fabio Tosti, Nikos Economou, and Francesco Benedetto. "Signal Processing of GPR Data for Road Surveys." Geosciences 9, no. 2 (February 19, 2019): 96. http://dx.doi.org/10.3390/geosciences9020096.

Texte intégral
Résumé :
Effective quality assurance and quality control inspections of new roads as well as assessment of remaining service-life of existing assets is taking priority nowadays. Within this context, use of ground penetrating radar (GPR) is well-established in the field, although standards for a correct management of datasets collected on roads are still missing. This paper reports a signal processing method for data acquired on flexible pavements using GPR. To demonstrate the viability of the method, a dataset collected on a real-life flexible pavement was used for processing purposes. An overview of t
Styles APA, Harvard, Vancouver, ISO, etc.
39

Edelmann, Geoffrey F. "Signal Processing: Data analysis, machine learning, and communications." Journal of the Acoustical Society of America 150, no. 4 (October 2021): A133. http://dx.doi.org/10.1121/10.0007877.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Schmidt, U., K. Caesar, and T. Himmel. "Data-driven array processor for video signal processing." IEEE Transactions on Consumer Electronics 36, no. 3 (1990): 327–33. http://dx.doi.org/10.1109/30.103139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Dong, Yunhan. "Frequency diverse array radar signal and data processing." IET Radar, Sonar & Navigation 12, no. 9 (September 2018): 954–63. http://dx.doi.org/10.1049/iet-rsn.2018.0031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Morgan, M. A., and B. W. McDaniel. "Transient electromagnetic scattering: data acquisition and signal processing." IEEE Transactions on Instrumentation and Measurement 37, no. 2 (June 1988): 263–67. http://dx.doi.org/10.1109/19.6063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Danaher, Seán, and the ACoRNE Collaboration). "First Data from ACoRNE and Signal Processing Techniques." Journal of Physics: Conference Series 81 (September 1, 2007): 012011. http://dx.doi.org/10.1088/1742-6596/81/1/012011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ma, Xuepo, Jian Cui, and Jianqiu Zhang. "Processing methods for signal suppression of FTMS data." Proteome Science 9, Suppl 1 (2011): S2. http://dx.doi.org/10.1186/1477-5956-9-s1-s2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kirianaki, N. V., S. Y. Yurish, N. O. Shpak, and V. P. Deynega. "Data Acquisition and Signal Processing for Smart Sensors." Measurement Science and Technology 13, no. 9 (August 14, 2002): 1501. http://dx.doi.org/10.1088/0957-0233/13/9/706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Rei, Silviu, Dan Chicea, Beriliu Ilie, and Sorin Olaru. "Dynamic Light Scattering Signal Conditioning for Data Processing." ACTA Universitatis Cibiniensis 69, no. 1 (December 20, 2017): 130–35. http://dx.doi.org/10.1515/aucts-2017-0016.

Texte intégral
Résumé :
Abstract When performing data acquisition for a Dynamic Light Scattering experiment, one of the most important aspect is the filtering and conditioning of the electrical signal. The signal is amplified first and then fed as input for the analog digital convertor. As a result a digital time series is obtained. The frequency spectrum is computed by the logical unit offering the basis for further Dynamic Light Scattering analysis methods. This paper presents a simple setup that can accomplish the signal conditioning and conversion to a digital time series.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Negi, Sanjay Singh, Nand Kishor, Avinash Kumar, and Kjetil Uhlen. "Signal processing for TFR of synchro-phasor data." IET Generation, Transmission & Distribution 11, no. 16 (November 9, 2017): 3881–91. http://dx.doi.org/10.1049/iet-gtd.2015.1566.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Brofferio, Sergio, and Giuseppe Mastronardi. "A migrating data driven architecture for signal processing." European Transactions on Telecommunications 1, no. 2 (March 1990): 119–25. http://dx.doi.org/10.1002/ett.4460010207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bellezza, Cinzia, and Flavio Poletto. "Multidimensional deconvolution and processing of seismic-interferometry Arctic data." GEOPHYSICS 79, no. 3 (May 1, 2014): WA25—WA38. http://dx.doi.org/10.1190/geo2013-0297.1.

Texte intégral
Résumé :
Multidimensional deconvolution (MDD) by point-spread-function removes the blurring effects and the spread distortions typically generated in the signal representation by seismic interferometry (SI). Under suitable conditions, the MDD inversion of SI signals reconstructed by the Kirchhoff-Helmholtz integral of crosscorrelation type is a valuable and robust technique to recover the Green’s function of the subsurface. A basic requirement for the effective MDD application to SI data is to know the separated incoming and outcoming wavefields at the receivers illuminated by the real sources. We exte
Styles APA, Harvard, Vancouver, ISO, etc.
50

Liao, Peng. "Data Processing System Based on Computer." Journal of Physics: Conference Series 2143, no. 1 (December 1, 2021): 012021. http://dx.doi.org/10.1088/1742-6596/2143/1/012021.

Texte intégral
Résumé :
Abstract With the popularization of computer and Internet, software technology, signal processing technology and real-time processing technology have been applied to all aspects of life, which has caused a surge of data. Therefore, big data (hereinafter referred to as BD) has become the focus of attention all over the world, which requires improving data application and processing technology. Through BD, countries can obtain corresponding knowledge, which will improve the software and comprehensive application of BD. With the in-depth study of deep learning algorithm, we can continuously impro
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!