Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Spallation sources.

Articles de revues sur le sujet « Spallation sources »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Spallation sources ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mezei, F. "Long pulse spallation sources." Physica B: Condensed Matter 234-236 (June 1997): 1227–32. http://dx.doi.org/10.1016/s0921-4526(97)00271-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fragopoulou, M., S. Stoulos, M. Manolopoulou, M. Krivopustov, and M. Zamani. "Dose Measurements around Spallation Neutron Sources." HNPS Proceedings 16 (January 1, 2020): 53. http://dx.doi.org/10.12681/hnps.2581.

Texte intégral
Résumé :
Neutron dose measurements and calculations around spallation sources are of importance for an appropriate shielding study. Two spallation sources, consisted of Pb target, have been irradiated by high-energy proton beams, delivered by the Nuclotron accelerator (JINR), Dubna. Dose measurements of the neutrons produced by the two spallation sources were performed using Solid State Nuclear Track Detectors (SSNTDs). In addition, the neutron dose after polyethylene and concrete was calculated using phenomenological model based on empirical relations applied in high energy Physics. Analytical and exp
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fragopoulou, M., M. Manolopoulou, S. Stoulos, et al. "Shielding around spallation neutron sources." Journal of Physics: Conference Series 41 (May 1, 2006): 514–18. http://dx.doi.org/10.1088/1742-6596/41/1/058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Fragopoulou, M., M. Manolopoulou, S. Stoulos, et al. "Shielding around spallation neutron sources." HNPS Proceedings 14 (December 5, 2019): 143. http://dx.doi.org/10.12681/hnps.2263.

Texte intégral
Résumé :
Spallation neutron sources provide more intense and harder neutron spectrum than nuclear reactors for which a substantial amount of shielding measurements have been performed. Although the main part of the cost for a spallation station is the cost of the shielding, measurements regarding shielding for the high energy neutron region are still very scarce. In this work calculation of the neutron interaction length in polyethylene moderator for different neutron energies is presented. Measurements which were carried out in Nuclotron accelerator at the Laboratory of High Energies (Joint Institute
Styles APA, Harvard, Vancouver, ISO, etc.
5

Watanabe, N. "Next-generation Japanese spallation sources." Physica B: Condensed Matter 213-214 (August 1995): 1048–52. http://dx.doi.org/10.1016/0921-4526(95)00360-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Perlado, J. M., M. Piera, and J. Sanz. "Option for spallation neutron sources." Journal of Fusion Energy 8, no. 3-4 (1989): 181–92. http://dx.doi.org/10.1007/bf01051648.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lander, Gerard H., and David L. Price. "Neutron Scattering with Spallation Sources." Physics Today 38, no. 1 (1985): 38–45. http://dx.doi.org/10.1063/1.881009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bryant, P. J. "Neutron spallation sources in Europe." Nuclear Physics B - Proceedings Supplements 51, no. 1 (1996): 125–34. http://dx.doi.org/10.1016/0920-5632(96)00423-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Thomae, R., R. Gough, R. Keller, et al. "Measurements on H− sources for spallation neutron source application." Review of Scientific Instruments 71, no. 2 (2000): 1213–15. http://dx.doi.org/10.1063/1.1150431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mason, Thomas E., Masatoshi Arai, and Kurt N. Clausen. "Next-Generation Neutron Sources." MRS Bulletin 28, no. 12 (2003): 923–28. http://dx.doi.org/10.1557/mrs2003.256.

Texte intégral
Résumé :
AbstractThis article gives an overview of current neutron-scattering facilities and illustrates the capabilities of third-generation sources that are now under development. The new science that is driving this development has been illustrated in the articles in this issue of MRS Bulletin and in a previous issue published in 1999 [MRS Bull.24 (12) (1999) p. 14]. The scale of these facilities is such that only three of them are envisaged worldwide, in the Asia Pacific region, Europe, and America. Two construction projects, the spallation neutron sources in the United States (SNS) and in Japan (J
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fomin, Nadia, Jason Fry, Robert W. Pattie, and Geoffrey L. Greene. "Fundamental Neutron Physics at Spallation Sources." Annual Review of Nuclear and Particle Science 72, no. 1 (2022): 151–76. http://dx.doi.org/10.1146/annurev-nucl-121521-051029.

Texte intégral
Résumé :
Low-energy neutrons have been a useful probe in fundamental physics studies for more than 70 years. With advances in accelerator technology, many new sources are spallation based. These new, high-flux facilities are becoming the sites for many next-generation fundamental neutron physics experiments. In this review, we present an overview of the sources and the current and upcoming fundamental neutron physics programs.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hix, W. Raphael, Anthony Mezzacappa, O. E. Bronson Messer, and S. W. Bruenn. "Supernova science at spallation neutron sources." Journal of Physics G: Nuclear and Particle Physics 29, no. 11 (2003): 2523–42. http://dx.doi.org/10.1088/0954-3899/29/11/008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Avignone1, F. T., L. Chatterjee2, Y. V. Efremenko3, and M. Strayer4. "Neutrino physics at spallation neutron sources." Journal of Physics G: Nuclear and Particle Physics 29, no. 11 (2003): 2497–98. http://dx.doi.org/10.1088/0954-3899/29/11/e01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Fragopoulou, M., S. Stoulos, M. Manolopoulou, M. Krivopustov, and M. Zamani. "Dose measurements around spallation neutron sources." Radiation Protection Dosimetry 132, no. 3 (2008): 277–82. http://dx.doi.org/10.1093/rpd/ncn280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Watanabe, Noboru. "Neutronics of pulsed spallation neutron sources." Reports on Progress in Physics 66, no. 3 (2003): 339–81. http://dx.doi.org/10.1088/0034-4885/66/3/202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Finney, J. L. "Science from pulsed spallation neutron sources." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (1993): c25. http://dx.doi.org/10.1107/s0108767378099262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Henderson, Stuart D. "Spallation Neutron Sources and Accelerator-Driven Systems." Reviews of Accelerator Science and Technology 06 (January 2013): 59–83. http://dx.doi.org/10.1142/s1793626813300041.

Texte intégral
Résumé :
Spallation neutron sources are the primary accelerator-driven source of intense neutrons. They require high power proton accelerators in the GeV energy range coupled to heavy metal targets for efficient neutron production. They form the basis of large scale neutron scattering facilities, and are essential elements in accelerator-driven subcritical reactors. Demanding technology has been developed which is enabling the next generation of spallation neutron sources to reach even higher neutron fluxes. This technology sets the stage for future deployment in accelerator-driven systems and neutron
Styles APA, Harvard, Vancouver, ISO, etc.
18

Fragopoulou, M., and M. Zamani. "Phenomenological calculations of shielding spallation neutron sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 714 (June 2013): 24–30. http://dx.doi.org/10.1016/j.nima.2013.02.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Bauer, G. S. "Physics and technology of spallation neutron sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 463, no. 3 (2001): 505–43. http://dx.doi.org/10.1016/s0168-9002(01)00167-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kiyanagi, Y., M. Nakajima, F. Hiraga, H. Iwasa, and N. Watanabe. "Backscattering moderators for pulsed spallation neutron sources." Physica B: Condensed Matter 213-214 (August 1995): 860–62. http://dx.doi.org/10.1016/0921-4526(95)00304-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Clausen, Kurt N. "Fission, spallation or fusion-based neutron sources." Pramana 71, no. 4 (2008): 623–28. http://dx.doi.org/10.1007/s12043-008-0250-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Cottrell, G. A., and L. J. Baker. "Structural materials for fusion and spallation sources." Journal of Nuclear Materials 318 (May 2003): 260–66. http://dx.doi.org/10.1016/s0022-3115(03)00117-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Chidley, Bruce G. "CW accelerators suitable for spallation neutron sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 249, no. 1 (1986): 102–15. http://dx.doi.org/10.1016/0168-9002(86)90246-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lander, G. H. "Scientific opportunities at future spallation neutron sources." Neutron News 4, no. 4 (1993): 8–9. http://dx.doi.org/10.1080/10448639308218955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zimmer, Oliver. "Superfluid-helium Ultracold Neutron Sources: Concepts for the European Spallation Source?" Physics Procedia 51 (2014): 85–88. http://dx.doi.org/10.1016/j.phpro.2013.12.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Young, A. R., T. Huegle, M. Makela, C. Morris, G. Muhrer, and A. Saunders. "Spallation-driven Ultracold Neutron Sources: Concepts for a Next Generation Source." Physics Procedia 51 (2014): 93–97. http://dx.doi.org/10.1016/j.phpro.2013.12.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lander, G. H. "New Opportunities in Materials Research With Pulsed Neutrons." MRS Bulletin 11, no. 1 (1986): 68–72. http://dx.doi.org/10.1557/s0883769400069943.

Texte intégral
Résumé :
AbstractNeutrons have played an important role in materials research for the last 30 years. Recently a new method of producing neutrons, with proton accelerators and specifically designed targets and moderators, has been developed. Many of the techniques developed with these powerful spallation sources open new opportunities for materials research, some of which will be covered in this article. An effort will be made to explain the types of science that can be done, rather than details of the techniques. Spallation sources are being operated as user facilities so the inexperienced can count on
Styles APA, Harvard, Vancouver, ISO, etc.
28

AvignoneIII, F. T., and Yu Efremenko. "Searches for neutrino oscillations at intense spallation sources." Journal of Physics G: Nuclear and Particle Physics 29, no. 11 (2003): 2665–75. http://dx.doi.org/10.1088/0954-3899/29/11/015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Snow, W. M. "Fundamental Neutron Physics with Long Pulsed Spallation Sources." Physics Procedia 51 (2014): 31–36. http://dx.doi.org/10.1016/j.phpro.2013.12.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

GEBAUER, B. "Towards detectors for next generation spallation neutron sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 535, no. 1-2 (2004): 65–78. http://dx.doi.org/10.1016/s0168-9002(04)01576-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Thomsen, K. "A compound target concept for pulsed spallation sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, no. 3 (2007): 1597–99. http://dx.doi.org/10.1016/j.nima.2007.07.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Schober, H., E. Farhi, F. Mezei, et al. "Tailored instrumentation for long-pulse neutron spallation sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 589, no. 1 (2008): 34–46. http://dx.doi.org/10.1016/j.nima.2008.01.102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Thomsen, K. "Liquid metal leak detection for spallation neutron sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 592, no. 3 (2008): 476–82. http://dx.doi.org/10.1016/j.nima.2008.03.115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mezei, F., and T. Gutberlet. "Workshop on Targets and Moderators for Spallation Sources." Journal of Neutron Research 11, no. 1-2 (2003): 1. http://dx.doi.org/10.1080/1023816031000100851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Mezei, F. "The raison d'être of long pulse spallation sources." Journal of Neutron Research 6, no. 1 (1997): 3–32. http://dx.doi.org/10.1080/10238169708200095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Thomsen, Knud. "Advanced on-target beam monitoring for spallation sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600, no. 1 (2009): 38–40. http://dx.doi.org/10.1016/j.nima.2008.11.069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Strobl, M. "Future prospects of imaging at spallation neutron sources." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 604, no. 3 (2009): 646–52. http://dx.doi.org/10.1016/j.nima.2009.03.075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ohl, M., M. Monkenbusch, and D. Richter. "Neutron spin-echo spectrometer development for spallation sources." Physica B: Condensed Matter 335, no. 1-4 (2003): 153–56. http://dx.doi.org/10.1016/s0921-4526(03)00228-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Carlile, C. J., and J. L. Finney. "New scientific horizons with pulsed spallation neutron sources." Physica B: Condensed Matter 174, no. 1-4 (1991): 451–69. http://dx.doi.org/10.1016/0921-4526(91)90644-t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Huang, Ming-Yang, Xin-Heng Guo, and Bing-Lin Young. "Detection of supernova neutrinos at spallation neutron sources." Chinese Physics C 40, no. 7 (2016): 073102. http://dx.doi.org/10.1088/1674-1137/40/7/073102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lisowski, P. W., C. D. Bowman, G. J. Russell, and S. A. Wender. "The Los Alamos National Laboratory Spallation Neutron Sources." Nuclear Science and Engineering 106, no. 2 (1990): 208–18. http://dx.doi.org/10.13182/nse90-a27471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Seeger, P. A., and R. P. Hjelm Jnr. "Small-angle neutron scattering at pulsed spallation sources." Journal of Applied Crystallography 24, no. 5 (1991): 467–78. http://dx.doi.org/10.1107/s0021889891004764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Mezei, F. "Neutron scattering instruments on long pulse spallation sources." Neutron News 7, no. 4 (1996): 5–6. http://dx.doi.org/10.1080/10448639608218460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lillard, R. Scott, and Darryl P. Butt. "The corrosion of materials in spallation neutron sources." JOM 50, no. 12 (1998): 56–59. http://dx.doi.org/10.1007/s11837-998-0310-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Trusso, Sebastiano, Giulia Festa, Claudia Scatigno, Giovanni Romanelli, Anna Piperno, and Rosina Celeste Ponterio. "Neutron sensing at spallation neutron sources by SERS." Applied Surface Science 651 (April 2024): 159186. http://dx.doi.org/10.1016/j.apsusc.2023.159186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Pietropaolo, A., E. Perelli Cippo, G. Gorini, et al. "-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, no. 1 (2009): 121–24. http://dx.doi.org/10.1016/j.nima.2009.06.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Miller, Thomas M., Douglas D. DiJulio, and Valentina Santoro. "Application of ADVANTG variance reduction parameters with MCNP6 at ESS." Journal of Neutron Research 22, no. 2-3 (2020): 199–208. http://dx.doi.org/10.3233/jnr-200158.

Texte intégral
Résumé :
Monte Carlo radiation transport codes have become the primary tool for shielding and activation analysis at high-powered spallation neutron sources. However, use of these codes to model facilities that have large amounts of shielding requires the use of variance reduction methods. This paper presents examples that apply ADVANTG generated variance reduction parameters to analyses performed at ESS using MCNP6. This requires some limitations in ADVANTG to be overcome and little-known features to be used. The focus of this paper is to describe how these limitations were overcome so other analyst a
Styles APA, Harvard, Vancouver, ISO, etc.
48

Xiong, Zhi Hong, Masatoshi Futakawa, Takashi Naoe, and Katsuhiro Maekawa. "Very High Cycle Fatigue in Pulsed High Power Spallation Neutron Source." Advanced Materials Research 891-892 (March 2014): 536–41. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.536.

Texte intégral
Résumé :
Very high cycle fatigue degradation of type 316L austenitic stainless steel, which is used as the structural material of neutron spallation sources under intensive neutron irradiation environment, is investigated by using an ultrasonic fatigue testing machine. The strain rate imposed on the structure of neutron spallation source is almost equivalent to that produced in the testing machine. The temperature on the surface was controlled by the air-cooling. The effect of strain rate on the fatigue strength is recognized to increase the fatigue limit.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bécares, V., and J. Blázquez. "Detector Dead Time Determination and Optimal Counting Rate for a Detector Near a Spallation Source or a Subcritical Multiplying System." Science and Technology of Nuclear Installations 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/240693.

Texte intégral
Résumé :
The operation of accelerator-driven systems or spallation sources requires the monitoring of intense neutron fluxes, which may be billions-fold more intense than the fluxes obtained with usual radioactive sources. If a neutron detector is placed near a very intense source, it can become saturated because of detector dead time. On the contrary, if it is placed far away from the source, it will lose counting statistics. For this reason, there must exist an optimal position for placing the detector. The optimal position is defined as the one with the minimal relative uncertainty in the counting r
Styles APA, Harvard, Vancouver, ISO, etc.
50

Futakawa, Masatoshi. "Proton Bombardment in Mercury Target for Neutron Production - Impact Dynamics on Interface between Liquid and Solid Metals." Applied Mechanics and Materials 566 (June 2014): 26–33. http://dx.doi.org/10.4028/www.scientific.net/amm.566.26.

Texte intégral
Résumé :
Innovative researches using neutrons are being performed at the Materials & Life Science Experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed as MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment when the intense proton beam hits the target, pressure waves are generated in mercury because of abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!