Littérature scientifique sur le sujet « Spectral inversion »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spectral inversion ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Spectral inversion"
Riethmüller, T. L., et S. K. Solanki. « The potential of many-line inversions of photospheric spectropolarimetric data in the visible and near UV ». Astronomy & ; Astrophysics 622 (24 janvier 2019) : A36. http://dx.doi.org/10.1051/0004-6361/201833379.
Texte intégralHall, R. L. « Geometric spectral inversion ». Journal of Physics A : Mathematical and General 28, no 6 (23 mars 1995) : 1771–86. http://dx.doi.org/10.1088/0305-4470/28/6/028.
Texte intégralRubino, J. Germán, et Danilo Velis. « Thin-bed prestack spectral inversion ». GEOPHYSICS 74, no 4 (juillet 2009) : R49—R57. http://dx.doi.org/10.1190/1.3148002.
Texte intégralHofmann, Ryan A., Kevin P. Reardon, Ivan Milic, Momchil E. Molnar, Yi Chai et Han Uitenbroek. « Evaluating Non-LTE Spectral Inversions with ALMA and IBIS ». Astrophysical Journal 933, no 2 (1 juillet 2022) : 244. http://dx.doi.org/10.3847/1538-4357/ac6f00.
Texte intégralMuyzert, Everhard. « Seabed property estimation from ambient-noise recordings : Part 2 — Scholte-wave spectral-ratio inversion ». GEOPHYSICS 72, no 4 (juillet 2007) : U47—U53. http://dx.doi.org/10.1190/1.2719062.
Texte intégralQi, Haixia, Bingyu Zhu, Lingxi Kong, Weiguang Yang, Jun Zou, Yubin Lan et Lei Zhang. « Hyperspectral Inversion Model of Chlorophyll Content in Peanut Leaves ». Applied Sciences 10, no 7 (26 mars 2020) : 2259. http://dx.doi.org/10.3390/app10072259.
Texte intégralXue, Yun, Bin Zou, Yimin Wen, Yulong Tu et Liwei Xiong. « Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra ». Sustainability 12, no 11 (29 mai 2020) : 4441. http://dx.doi.org/10.3390/su12114441.
Texte intégralWang, Weiyan, Yungui Zhang, Zhihong Li, Qingli Liu, Wenqiang Feng, Yulan Chen, Hong Jiang, Hui Liang et Naijie Chang. « Fourier-Transform Infrared Spectral Inversion of Soil Available Potassium Content Based on Different Dimensionality Reduction Algorithms ». Agronomy 13, no 3 (21 février 2023) : 617. http://dx.doi.org/10.3390/agronomy13030617.
Texte intégralNeukirch, Maik, Antonio García-Jerez, Antonio Villaseñor, Francisco Luzón, Jacques Brives et Laurent Stehly. « On the Utility of Horizontal-to-Vertical Spectral Ratios of Ambient Noise in Joint Inversion with Rayleigh Wave Dispersion Curves for the Large-N Maupasacq Experiment ». Sensors 21, no 17 (4 septembre 2021) : 5946. http://dx.doi.org/10.3390/s21175946.
Texte intégralCięszczyk, Sławomir. « A Multi-Band Integrated Virtual Calibration-Inversion Method for Open Path FTIR Spectrometry ». Metrology and Measurement Systems 20, no 2 (1 juin 2013) : 287–98. http://dx.doi.org/10.2478/mms-2013-0025.
Texte intégralThèses sur le sujet "Spectral inversion"
Orozco, M. Catalina (Maria Catalina). « Inversion Method for Spectral Analysis of Surface Waves (SASW) ». Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5124.
Texte intégralSet, Sze Yun. « Dispersion compensation in high bit rate transmission systems using midspan spectral inversion ». Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/394393/.
Texte intégralDeng, Mo Ph D. Massachusetts Institute of Technology. « Deep learning with physical and power-spectral priors for robust image inversion ». Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127013.
Texte intégralCataloged from the official PDF of thesis.
Includes bibliographical references (pages 169-182).
Computational imaging is the class of imaging systems that utilizes inverse algorithms to recover unknown objects of interest from physical measurements. Deep learning has been used in computational imaging, typically in the supervised mode and in an End-to-End fashion. However, treating the machine learning algorithm as a mere black-box is not the most efficient, as the measurement formation process (a.k.a. the forward operator), which depends on the optical apparatus, is known to us. Therefore, it is inefficient to let the neural network to explain, at least partly, the system physics. Also, some prior knowledge of the class of objects of interest can be leveraged to make the training more efficient. The main theme of this thesis is to design more efficient deep learning algorithms with the help of physical and power-spectral priors.
We first propose the learning to synthesize by DNN (LS-DNN) scheme, where we propose a dual-channel DNN architecture, each designated to low and high frequency band, respectively, to split, process, and subsequently, learns to recombine low and high frequencies for better inverse conversion. Results show that the LS-DNN scheme largely improves reconstruction quality in many applications, especially in the most severely ill-posed case. In this application, we have implicitly incorporated the system physics through data pre-processing; and the power-spectral prior through the design of the band-splitting configuration. We then propose to use the Phase Extraction Neural Networks (PhENN) trained with perceptual loss, that is based on extracted feature maps from pre-trained classification neural networks, to tackle the problem of low-light phase retrieval under low-light conditions.
This essentially transfer the knowledge, or features relevant to classifications, and thus corresponding to human perceptual quality, to the image-transformation network (such as PhENN). We find that the commonly defined perceptual loss need to be refined for the low-light applications, to avoid the strengthened "grid-like" artifacts and achieve superior reconstruction quality. Moreover, we investigate empirically the interplay between the physical and con-tent prior in using deep learning for computational imaging. More specifically, we investigate the effect of training examples to the learning of the underlying physical map and find that using training datasets with higher Shannon entropy is more beneficial to guide the training to correspond better to the system physics and thus the trained mode generalizes better to test examples disjoint from the training set.
Conversely, if more restricted examples are used as training examples, the training can be guided to undesirably "remember" to produce the ones similar as those in training, making the cross-domain generalization problematic. Next, we also propose to use deep learning to greatly accelerate the optical diffraction tomography algorithm. Unlike previous algorithms that involve iterative optimization algorithms, we present significant progresses towards 3D refractive index (RI) maps from a single-shot angle-multiplexing interferogram. Last but not least, we propose to use cascaded neural networks to incorporate the system physics directly into the machine learning algorithms, while leaving the trainable architectures to learn to function as the ideal Proximal mapping associated with the efficient regularization of the data. We show that this unrolled scheme significantly outperforms the End-to-End scheme, in low-light imaging applications.
by Mo Deng.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Pappalardo, Cirino, Bernd Vollmer et Ariane Lancon. « The star formation history of Virgo spiral galaxies. Combined spectral and photometric inversion ». Phd thesis, Université de Strasbourg, 2010. http://tel.archives-ouvertes.fr/tel-00483128.
Texte intégralPappalardo, Cirino. « The star formation history of Virgo spiral galaxies : combined spectral and photometric inversion ». Strasbourg, 2010. https://publication-theses.unistra.fr/public/theses_doctorat/2010/PAPPALARDO_Cirino_2010.pdf.
Texte intégralThis thesis investigates the influence of ram pressure stripping on the star formation history of cluster spiral galaxies. Ram pressure stripping is the hydrodynamical interaction between the interstellar medium (ISM) of a spiral galaxy that is moving inside the potential well of a cluster, and the intracluster medium (ICM). If the dynamical pressure exerted by the ICM is larger than the restoring force due to the galactic potential, the galaxy loses gas from the outer disk. The Virgo cluster is an ideal laboratory to study environmental effects on galaxy evolution, because it is rich in spirals and dynamically young. From observations we know that the amount of atomic gas in Virgo spirals is less than that of galaxies in the field. In particular cluster spirals show truncated HI disks (Giovanelli & Haynes 1983, Cayatte et al. 1990). For those galaxies that also show a symmetrical stellar distribution, ram pressure stripping is the most probably origin of the gas-disk truncation
OLIVEIRA, OTAVIO KAMINSKI DE. « INVERSION OF NONLINEAR PERTURBATIONS OF THE LAPLACIAN IN GENERAL DOMAINS WITH FINITE SPECTRAL INTERACTION ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27930@1.
Texte intégralCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Consideramos a análise numérica de perturbações não lineares do Laplaciano definido em regiões limitadas tratáveis pelo Método de Elementos Finitos. Supomos que as não linearidades interagem com k autovalores do Laplaciano livre. Apresentamos uma redução do problema à inversão de uma função de k variáveis e delineamos uma técnica para tal. O texto é uma extensão dos trabalhos de Cal Neto, Malta, Saldanha e Tomei.
We consider the numerical analysis of nonlinear perturbations of the Laplacian defined in limited regions amenable to the Finite Element Method. The nonlinearities are supposed to interact only with k eigenvalues of the free Laplacian. We present a reduction of the problem to the inversion of a function of k variables and indicate a technique to do so. The text extends the works by Cal Neto, Malta, Saldanha and Tomei.
Reine, Carl Andrew. « A robust prestack Q-Inversion in the T-p Domain using variable-window spectral estimates ». Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511145.
Texte intégralFernandez, Cesar Aaron Moya. « Two alternative inversion techniques for the determination of seismic site response and propagation-path velocity structure : spectral inversion with reference events and neural networks ». 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147831.
Texte intégralMarkusson, Ola. « Model and System Inversion with Applications in Nonlinear System Identification and Control ». Doctoral thesis, KTH, Signals, Sensors and Systems, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3287.
Texte intégralGhorbani, Ahmad. « Contribution au développement de la résistivité complexe et à ses applications en environnement ». Paris 6, 2007. http://www.theses.fr/2007PA066607.
Texte intégralLivres sur le sujet "Spectral inversion"
Data inversion algorithm development for the hologen [i.e. halogen] occultation experiment. [Williamsburg, Va.?] : College of William and Mary, 1987.
Trouver le texte intégralMyers, Timothy F. Proposed implementation of a near-far resistant multiuser detector without matrix inversion using Delta-Sigma modulation. 1992.
Trouver le texte intégralBrown, Derek H. Projectivism and Phenomenal Presence. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199666416.003.0010.
Texte intégralChapitres de livres sur le sujet "Spectral inversion"
Fichtner, Andreas. « Spectral-Element Methods ». Dans Full Seismic Waveform Modelling and Inversion, 59–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_4.
Texte intégralLeeb, H., H. Fiedeldey, R. Lipperheide et W. A. Schnizer. « Inversion of Three-Quark Spectral Data ». Dans Inverse Problems and Theoretical Imaging, 356–62. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75298-8_44.
Texte intégralKurtuluş, C., et M. Alpmen. « Spectral Analysis of Blast Vibrations from Large Explosions ». Dans Theory and Practice of Geophysical Data Inversion, 283–308. Wiesbaden : Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-322-89417-5_18.
Texte intégralHori, Muneo. « Inversion Method Using Spectral Decomposition of Green’s Function ». Dans IUTAM Symposium on Field Analyses for Determination of Material Parameters — Experimental and Numerical Aspects, 123–37. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0109-0_12.
Texte intégralFiedeldey, H. « Inversion at Fixed-Energy for Nonlocal and Algebraic Potentials and N-Body Spectral Inversion ». Dans Lecture Notes in Physics, 176–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-13969-1_12.
Texte intégralFiedeldey, H. « Inversion at fixed-energy for nonlocal and algebraic potentials and N-body spectral inversion ». Dans Lecture Notes in Physics, 176–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57576-6_12.
Texte intégralMecozzi, Antonio. « Devices for all-optical wavelength conversion and spectral inversion ». Dans Optical Networks : Design and Modelling, 25–29. New York, NY : Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35398-2_3.
Texte intégralSocas-Navarro, Héctor. « Non-LTE Inversion of Spectral Lines and Stokes Profiles ». Dans Highlights of Spanish Astrophysics II, 233–40. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1776-2_55.
Texte intégralCuomo, V., U. Amato, R. Rizzi, C. Serio et V. Tramutoli. « Topics in Optimal Inversion Schemes Applied to Atmospheric Structure Retrieval ». Dans High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, 163–74. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84599-4_11.
Texte intégralHorvath, H., F. J. Olmo, L. Alados Arboledas, O. Jovanovic, M. Gangl, W. Kaller, C. Sanchez, H. Sauerzopf et S. Seidl. « Size Distributions of Particles Obtained by Inversion of Spectral Extinction and Scattering Measurements ». Dans Optics of Cosmic Dust, 143–58. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0628-6_9.
Texte intégralActes de conférences sur le sujet "Spectral inversion"
Maulana, A. D. « Seismic Inversion Resolution Enhancement With (3S) Spectral Blueing, Spectral Balancing, and Stochastic Inversion on Fluvio Deltaic Environment ». Dans Indonesian Petroleum Association - 46th Annual Convention & Exhibition 2022. Indonesian Petroleum Association, 2022. http://dx.doi.org/10.29118/ipa22-g-126.
Texte intégralHALL, RICHARD L. « GEOMETRIC SPECTRAL INVERSION ». Dans Proceedings of the 13th Regional Conference. World Scientific Publishing Company, 2012. http://dx.doi.org/10.1142/9789814417532_0001.
Texte intégralSwiatlowski, J., et W. Leoński. « Short pulse-induced population inversion for continuum-continuum transitions ». Dans Spectral line shapes. AIP, 1990. http://dx.doi.org/10.1063/1.39932.
Texte intégralSharma, Anshuman, Vishnu Kishore Pai et N. Reviraj. « Spectral inversion in QPSK receiver ». Dans 2016 International conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 2016. http://dx.doi.org/10.1109/scopes.2016.7955766.
Texte intégralNing, Chengda, Xianyong Jing, Zhihuan Lan et Chunyan Tian. « Spectral measuring temperature inversion study ». Dans 2016 2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA-16). Paris, France : Atlantis Press, 2016. http://dx.doi.org/10.2991/wartia-16.2016.76.
Texte intégralZhou*, Donghong, Bo Wang, Zhanghong Shen et Gang Peng. « Geostatistical spectral inversion : The thin layer study using spectral inversion method with geostatistical information ». Dans SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0666.1.
Texte intégralBoardman, Joseph W. « Inversion of high spectral resolution data ». Dans Imaging Spectroscopy of the Terrestrial Environment, sous la direction de Gregg Vane. SPIE, 1990. http://dx.doi.org/10.1117/12.21355.
Texte intégralChen, Siyuan, Siyuan Cao, Yaoguang Sun et Yumeng Jiang. « Nonstationary spectral inversion of seismic data ». Dans First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3583203.1.
Texte intégralBonar, David C., et Mauricio D. Sacchi. « Complex spectral decomposition via inversion strategies ». Dans SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 2010. http://dx.doi.org/10.1190/1.3513105.
Texte intégralLazaratos, Spyros, et Roy L. David. « Inversion by pre‐migration spectral shaping ». Dans SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255338.
Texte intégralRapports d'organisations sur le sujet "Spectral inversion"
Yeh. Spectral Logic Inversion Using Optical Wave Mixing. Fort Belvoir, VA : Defense Technical Information Center, novembre 1995. http://dx.doi.org/10.21236/ada307495.
Texte intégralWhite, H. P., J. C. Deguise, J. W. Schwarz, R. Hitchcock et K. Staenz. Defining Shaded Spectra by Model Inversion for Spectral Unmixing of Hyperspectral Datasets - Theory and Preliminary Application. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/219895.
Texte intégralBaumgardt, Douglas R., et Angelina Freeman. Characterization of Underwater Explosions by Spectral/Cepstral Analysis, Modeling and Inversion. Fort Belvoir, VA : Defense Technical Information Center, mai 2005. http://dx.doi.org/10.21236/ada443931.
Texte intégralDesbarats, A. J. An iterative least-square method for the inversion of spectral radiometric data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128069.
Texte intégralGriem, H. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions. Office of Scientific and Technical Information (OSTI), octobre 1988. http://dx.doi.org/10.2172/7264387.
Texte intégralAuthor, Not Given. Source Spectra Analysis of SPE Phase I from Frequency-Domain Moment Tensor Inversion. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1407858.
Texte intégral