Littérature scientifique sur le sujet « Spectral Sequences (Mathematics) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spectral Sequences (Mathematics) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Spectral Sequences (Mathematics)"
Liu, Youming, et Yuesheng Xu. « Piecewise linear spectral sequences ». Proceedings of the American Mathematical Society 133, no 8 (21 mars 2005) : 2297–308. http://dx.doi.org/10.1090/s0002-9939-05-08067-6.
Texte intégralCulver, Dominic Leon, Hana Jia Kong et J. D. Quigley. « Algebraic slice spectral sequences ». Documenta Mathematica 26 (2021) : 1085–119. http://dx.doi.org/10.4171/dm/836.
Texte intégralRomero, A., J. Rubio et F. Sergeraert. « Computing spectral sequences ». Journal of Symbolic Computation 41, no 10 (octobre 2006) : 1059–79. http://dx.doi.org/10.1016/j.jsc.2006.06.002.
Texte intégralTurner, James M. « Operations and Spectral Sequences. I ». Transactions of the American Mathematical Society 350, no 9 (1998) : 3815–35. http://dx.doi.org/10.1090/s0002-9947-98-02254-5.
Texte intégralCORNEA, O., K. A. DE REZENDE et M. R. DA SILVEIRA. « Spectral sequences in Conley’s theory ». Ergodic Theory and Dynamical Systems 30, no 4 (13 octobre 2009) : 1009–54. http://dx.doi.org/10.1017/s0143385709000479.
Texte intégralKapranov, Mikhail, et Evangelos Routis. « Complete complexes and spectral sequences ». Pure and Applied Mathematics Quarterly 13, no 2 (2017) : 215–46. http://dx.doi.org/10.4310/pamq.2017.v13.n2.a2.
Texte intégralCoons, Michael, James Evans et Neil Mañibo. « Spectral theory of regular sequences ». Documenta Mathematica 27 (2022) : 629–53. http://dx.doi.org/10.4171/dm/880.
Texte intégralFujisawa, Taro. « Degeneration of weight spectral sequences ». manuscripta mathematica 108, no 1 (1 mai 2002) : 91–121. http://dx.doi.org/10.1007/s002290200256.
Texte intégralBousfield, A. K. « Homotopy spectral sequences and obstructions ». Israel Journal of Mathematics 66, no 1-3 (décembre 1989) : 54–104. http://dx.doi.org/10.1007/bf02765886.
Texte intégralLivernet, Muriel, et Sarah Whitehouse. « Homotopy theory of spectral sequences ». Homology, Homotopy and Applications 26, no 1 (2024) : 69–86. http://dx.doi.org/10.4310/hha.2024.v26.n1.a5.
Texte intégralThèses sur le sujet "Spectral Sequences (Mathematics)"
Faulkner, Sean (Sean Anthony) Carleton University Dissertation Engineering Electrical. « Composite sequences for rapid acquisition of direct-sequence spread spectrum signals ». Ottawa, 1992.
Trouver le texte intégralGong, Sherry Ph D. Massachusetts Institute of Technology. « Results on spectral sequences for monopole and singular instanton Floer homologies ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117864.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 107-108).
We study two gauge-theoretic Floer homologies associated to links, the singular instanton Floer homology introduced in [15] and the monopole Floer homology, which is explained in the book [16]. For both cases, we study in particular the spectral sequence that relates the Floer homologies to the Khovanov homologies of links. In our study of singular instanton Floer homology, we introduce a version of Khovanov homology for alternating links with marking data, W, inspired by singular instanton theory. We show that the analogue of the spectral sequence from Khovanov homology to singular instanton homology introduced in [15] for this marked Khovanov homology collapses on the E2 page for alternating links. We moreover show that for non-split links the Khovanov homology we introduce for alternating links does not depend on w; thus, the instanton homology also does not depend on W for non-split alternating links. We study a version of binary dihedral representations for links with markings, and show that for links of non-zero determinant, this also does not depend on w. In our study of monopole Floer homology, we construct families of metrics on the cobordisms that are used to construct differentials in the spectral sequence relating the Khovanov homology of a link to the monopole Floer homology of its double branched cover, such that each metric has positive scalar curvature. This allows us to conclude that the Seiberg-Witten equations for these families of metrics have no irreducible solutions, so the differentials in the spectral sequence can be computed from counting only the reducible solutions.
by Sherry Gong.
Ph. D.
Garfield, Peter McKee. « The bigraded Rumin complex / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/5785.
Texte intégralKronholm, William C. « The RO(G)-graded Serre spectral sequence / ». Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8284.
Texte intégralTypescript. Includes vita and abstract. Includes bibliographical references (leaves 71-72). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Nave, Lee Stewart. « The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes / ». Thesis, Connect to this title online ; UW restricted, 1999. http://hdl.handle.net/1773/5803.
Texte intégralLima, Dahisy Valadão de Souza 1986. « Dynamical spectral sequences for Morse-Novikov and Morse-Bott complexes ». [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307538.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-25T10:15:50Z (GMT). No. of bitstreams: 1 Lima_DahisyValadaodeSouza_D.pdf: 22146296 bytes, checksum: c88725de657b032422b9e4614ccd91a9 (MD5) Previous issue date: 2014
Resumo: O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado
Abstract: The main theme in this thesis is the study of gradient flows associated to a vector field $-\nabla f$ on closed manifolds, where $f$ is either a Morse function, a circle-valued Morse function or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic and topological tools such as spectral sequences and connection matrices. In the Morse context, consider a chain complex $(C,\Delta)$ generated by the critical points of $f$, where $\Delta$ counts the number of flow lines between consecutive critical points with signs. A spectral sequence $(E^{r},d^{r})$ analysis is used to obtain results on global continuation of flows on surfaces. A link is established between the differentials on the $r$-th page of $(E^{r},d^{r})$ and cancellation of critical points. In the circle-valued Morse case $f:M \rightarrow S^{1}$, a sweeping algorithm for the Novikov chain complex $(\mathcal{N},\Delta)$ associated to $f$ and generated by the critical points of $f$ is defined over the ring $\mathbb{Z}((t))$. This algorithm produces at each stage Novikov matrices. We prove that the last Novikov matrix has polynomial entries which is quite surprising since the matrices in the intermediary stages may have infinite series entries. We also present results showing that the modules and differentials of the spectral sequence associated to $(\mathcal{N},\Delta)$ can be retrieved through the sweeping algorithm. For gradient flows associated to Morse-Bott functions, the singularities form critical manifolds. We use the Conley index theory for the critical manifolds in order to characterize the set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set of connection matrices caused by a change in the partial ordering and Morse decomposition of isolated invariant sets
Doutorado
Matematica
Doutora em Matemática
Hollander, Michael Israel. « Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems / ». Thesis, Connect to this title online ; UW restricted, 1996. http://hdl.handle.net/1773/5747.
Texte intégralSavinien, Jean P. X. « Cohomology and K-theory of aperiodic tilings ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24732.
Texte intégralCommittee Chair: Prof. Jean Bellissard; Committee Member: Prof. Claude Schochet; Committee Member: Prof. Michael Loss; Committee Member: Prof. Stavros Garoufalidis; Committee Member: Prof. Thang Le.
Giusti, Chad David 1978. « Plumbers' knots and unstable Vassiliev theory ». Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10869.
Texte intégralWe introduce a new finite-complexity knot theory, the theory of plumbers' knots, as a model for classical knot theory. The spaces of plumbers' curves admit a combinatorial cell structure, which we exploit to algorithmically solve the classification problem for plumbers' knots of a fixed complexity. We describe cellular subdivision maps on the spaces of plumbers' curves which consistently make the spaces of plumbers' knots and their discriminants into directed systems. In this context, we revisit the construction of the Vassiliev spectral sequence. We construct homotopical resolutions of the discriminants of the spaces of plumbers knots and describe how their cell structures lift to these resolutions. Next, we introduce an inverse system of unstable Vassiliev spectral sequences whose limit includes, on its E ∞ - page, the classical finite-type invariants. Finally, we extend the definition of the Vassiliev derivative to all singularity types of plumbers' curves and use it to construct canonical chain representatives of the resolution of the Alexander dual for any invariant of plumbers' knots.
Committee in charge: Dev Sinha, Chairperson, Mathematics; Hal Sadofsky, Member, Mathematics; Arkady Berenstein, Member, Mathematics; Daniel Dugger, Member, Mathematics; Andrzej Proskurowski, Outside Member, Computer & Information Science
Anderson, Curtis James. « Estimating the Optimal Extrapolation Parameter for Extrapolated Iterative Methods When Solving Sequences of Linear Systems ». University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1383826559.
Texte intégralLivres sur le sujet "Spectral Sequences (Mathematics)"
Vershinin, V. V. Cobordisms and spectral sequences. Providence, R.I : American Mathematical Society, 1993.
Trouver le texte intégralHurd, Harry L. Periodically correlated random sequences : Spectral theory and practice. Hoboken, NJ : Wiley-Interscience, 2007.
Trouver le texte intégralJorgenson, Jay. Basic analysis of regularized series and products. Berlin : Springer-Verlag, 1993.
Trouver le texte intégralPetrović, Mihailo. Matematićki spektri. Beograd : Zavod za udžbenike i nastavna sredstva, 1998.
Trouver le texte intégralHurd, Harry L. Periodically correlated random sequences : Spectral theory and practice. Hoboken, N.J : John Wiley, 2007.
Trouver le texte intégralBarnes, D. W. Spectral sequence constructors in algebra and topology. Providence, R.I., USA : American Mathematical Society, 1985.
Trouver le texte intégralDula, Giora. Diagram cohomology and isovariant homotopy theory. Providence, R.I : American Mathematical Society, 1994.
Trouver le texte intégralAisbett, Janet E. On K[subscript *](Z/n) and K[subscript *](F[subscript q][t]/(t[superscript 2)). Providence, R.I : American Mathematical Society, 1985.
Trouver le texte intégralZhuravlev, P. V. Spektroradiometricheskie pribory distant︠s︡ionnogo zondirovanii︠a︡ na osnove preobrazovanii︠a︡ Adamara. Novosibirsk : Konstruktorsko-tekhnologicheskiĭ institut prikladnoĭ mikroėlektroniki SO RAN, 2003.
Trouver le texte intégral1938-, Mimura M., et Nishimoto Tetsu 1969-, dir. Twisted tensor products related to the cohomology of the classifying spaces of loop groups. Providence, RI : American Mathematical Society, 2006.
Trouver le texte intégralChapitres de livres sur le sujet "Spectral Sequences (Mathematics)"
Penner, Robert. « Spectral Sequences ». Dans Lecture Notes in Mathematics, 113–18. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5_22.
Texte intégralFélix, Yves, Stephen Halperin et Jean-Claude Thomas. « Spectral sequences ». Dans Graduate Texts in Mathematics, 260–67. New York, NY : Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0105-9_19.
Texte intégralCox, David, John Little et Henry Schenck. « Spectral sequences ». Dans Graduate Studies in Mathematics, 811–16. Providence, Rhode Island : American Mathematical Society, 2011. http://dx.doi.org/10.1090/gsm/124/18.
Texte intégralPenner, Robert. « Spectral Sequences Continued ». Dans Lecture Notes in Mathematics, 119–24. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5_23.
Texte intégralPenner, Robert. « Hyper-Homology Spectral Sequences ». Dans Lecture Notes in Mathematics, 125–30. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5_24.
Texte intégralMardešić, Sibe. « Spectral sequences. Abelian groups ». Dans Springer Monographs in Mathematics, 405–38. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-13064-3_21.
Texte intégralEckmann, Beno. « Composition Functors and Spectral Sequences ». Dans Springer Collected Works in Mathematics, 486–520. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-37339-8_40.
Texte intégralBoix, Alberto F. « On Some Local Cohomology Spectral Sequences ». Dans Trends in Mathematics, 21–26. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45441-2_4.
Texte intégralFomenko, Anatoly, et Dmitry Fuchs. « Chapter 3 : Spectral Sequences of Fibrations ». Dans Graduate Texts in Mathematics, 305–87. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23488-5_3.
Texte intégralGaroni, Carlo, et Stefano Serra-Capizzano. « Generalized Locally Toeplitz Sequences : A Spectral Analysis Tool for Discretized Differential Equations ». Dans Lecture Notes in Mathematics, 161–236. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94911-6_3.
Texte intégralActes de conférences sur le sujet "Spectral Sequences (Mathematics)"
Rebane, Karl K., Olavi Ollikainen et Alexander Rebane. « Error-Corrective Recall of Digital Optical Images in Neural Networks Models by Photoburning of Spectral Holes ». Dans Persistent Spectral Hole Burning : Science and Applications. Washington, D.C. : Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.thb1.
Texte intégralNunes, Luis Manoel Paiva, C. Guedes Soares et Jose Antonio Moreira Lima. « Separation of Wave Systems in Time Series of Combined Sea States ». Dans ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57643.
Texte intégralIslamov, Rustam, et Vasily Ustinov. « Computer Program PRAISE : Uncertainty Analysis of Heat Exchanger Three-Dimensional Flow Speed Model ». Dans ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1039.
Texte intégralAbbas, M. Jamshed, Muhammad Awais et Asim Ul Haq. « Comparative analysis of wideband communication techniques : Chirp spread spectrum and direct sequence spread spectrum ». Dans 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2018. http://dx.doi.org/10.1109/icomet.2018.8346348.
Texte intégralBaşar, Feyzi, et Ali Karaisa. « Spectrum and fine spectrum of the upper triangular triple-band matrix over some sequence spaces ». Dans ADVANCEMENTS IN MATHEMATICAL SCIENCES : Proceedings of the International Conference on Advancements in Mathematical Sciences. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930511.
Texte intégralBaşar, Feyzi, Nuh Durna et Mustafa Yildirim. « SUBDIVISIONS OF THE SPECTRA FOR GENERALIZED DIFFERENCE OPERATOR ???v ON THE SEQUENCE SPACE ???1 ». Dans ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525122.
Texte intégralJanošek, Michal. « Preliminary multivariate analysis of the Harvard spectral classification of the H-R diagram main sequence stars ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912759.
Texte intégralBaşar, Feyzi, et Ali Karaisa. « Fine spectra of upper triangle triple band matrices over the sequence spaces [script-l]p, (0 < ; p < ; ∞) ». Dans FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS : ICAAM 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4747658.
Texte intégralIsmael, Yaseen. « Secure Image Steganography by Utilizing DNA Properties ». Dans 3rd International Conference of Mathematics and its Applications. Salahaddin University-Erbil, 2020. http://dx.doi.org/10.31972/ticma22.08.
Texte intégralYeşilkayagil, Medine, et Feyzi Başar. « On the fine spectrum of the operator defined by a lambda matrix over the sequence space c0 and c ». Dans FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS : ICAAM 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4747674.
Texte intégral