Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Spectral Sequences (Mathematics).

Thèses sur le sujet « Spectral Sequences (Mathematics) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 38 meilleures thèses pour votre recherche sur le sujet « Spectral Sequences (Mathematics) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Faulkner, Sean (Sean Anthony) Carleton University Dissertation Engineering Electrical. « Composite sequences for rapid acquisition of direct-sequence spread spectrum signals ». Ottawa, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gong, Sherry Ph D. Massachusetts Institute of Technology. « Results on spectral sequences for monopole and singular instanton Floer homologies ». Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117864.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 107-108).
We study two gauge-theoretic Floer homologies associated to links, the singular instanton Floer homology introduced in [15] and the monopole Floer homology, which is explained in the book [16]. For both cases, we study in particular the spectral sequence that relates the Floer homologies to the Khovanov homologies of links. In our study of singular instanton Floer homology, we introduce a version of Khovanov homology for alternating links with marking data, W, inspired by singular instanton theory. We show that the analogue of the spectral sequence from Khovanov homology to singular instanton homology introduced in [15] for this marked Khovanov homology collapses on the E2 page for alternating links. We moreover show that for non-split links the Khovanov homology we introduce for alternating links does not depend on w; thus, the instanton homology also does not depend on W for non-split alternating links. We study a version of binary dihedral representations for links with markings, and show that for links of non-zero determinant, this also does not depend on w. In our study of monopole Floer homology, we construct families of metrics on the cobordisms that are used to construct differentials in the spectral sequence relating the Khovanov homology of a link to the monopole Floer homology of its double branched cover, such that each metric has positive scalar curvature. This allows us to conclude that the Seiberg-Witten equations for these families of metrics have no irreducible solutions, so the differentials in the spectral sequence can be computed from counting only the reducible solutions.
by Sherry Gong.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Garfield, Peter McKee. « The bigraded Rumin complex / ». Thesis, Connect to this title online ; UW restricted, 2001. http://hdl.handle.net/1773/5785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kronholm, William C. « The RO(G)-graded Serre spectral sequence / ». Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8284.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of Oregon, 2008.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 71-72). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nave, Lee Stewart. « The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes / ». Thesis, Connect to this title online ; UW restricted, 1999. http://hdl.handle.net/1773/5803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lima, Dahisy Valadão de Souza 1986. « Dynamical spectral sequences for Morse-Novikov and Morse-Bott complexes ». [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307538.

Texte intégral
Résumé :
Orientador: Ketty Abaroa de Rezende
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-25T10:15:50Z (GMT). No. of bitstreams: 1 Lima_DahisyValadaodeSouza_D.pdf: 22146296 bytes, checksum: c88725de657b032422b9e4614ccd91a9 (MD5) Previous issue date: 2014
Resumo: O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado
Abstract: The main theme in this thesis is the study of gradient flows associated to a vector field $-\nabla f$ on closed manifolds, where $f$ is either a Morse function, a circle-valued Morse function or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic and topological tools such as spectral sequences and connection matrices. In the Morse context, consider a chain complex $(C,\Delta)$ generated by the critical points of $f$, where $\Delta$ counts the number of flow lines between consecutive critical points with signs. A spectral sequence $(E^{r},d^{r})$ analysis is used to obtain results on global continuation of flows on surfaces. A link is established between the differentials on the $r$-th page of $(E^{r},d^{r})$ and cancellation of critical points. In the circle-valued Morse case $f:M \rightarrow S^{1}$, a sweeping algorithm for the Novikov chain complex $(\mathcal{N},\Delta)$ associated to $f$ and generated by the critical points of $f$ is defined over the ring $\mathbb{Z}((t))$. This algorithm produces at each stage Novikov matrices. We prove that the last Novikov matrix has polynomial entries which is quite surprising since the matrices in the intermediary stages may have infinite series entries. We also present results showing that the modules and differentials of the spectral sequence associated to $(\mathcal{N},\Delta)$ can be retrieved through the sweeping algorithm. For gradient flows associated to Morse-Bott functions, the singularities form critical manifolds. We use the Conley index theory for the critical manifolds in order to characterize the set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set of connection matrices caused by a change in the partial ordering and Morse decomposition of isolated invariant sets
Doutorado
Matematica
Doutora em Matemática
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hollander, Michael Israel. « Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems / ». Thesis, Connect to this title online ; UW restricted, 1996. http://hdl.handle.net/1773/5747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Savinien, Jean P. X. « Cohomology and K-theory of aperiodic tilings ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24732.

Texte intégral
Résumé :
Thesis (Ph.D.)--Mathematics, Georgia Institute of Technology, 2008.
Committee Chair: Prof. Jean Bellissard; Committee Member: Prof. Claude Schochet; Committee Member: Prof. Michael Loss; Committee Member: Prof. Stavros Garoufalidis; Committee Member: Prof. Thang Le.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Giusti, Chad David 1978. « Plumbers' knots and unstable Vassiliev theory ». Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10869.

Texte intégral
Résumé :
viii, 57 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
We introduce a new finite-complexity knot theory, the theory of plumbers' knots, as a model for classical knot theory. The spaces of plumbers' curves admit a combinatorial cell structure, which we exploit to algorithmically solve the classification problem for plumbers' knots of a fixed complexity. We describe cellular subdivision maps on the spaces of plumbers' curves which consistently make the spaces of plumbers' knots and their discriminants into directed systems. In this context, we revisit the construction of the Vassiliev spectral sequence. We construct homotopical resolutions of the discriminants of the spaces of plumbers knots and describe how their cell structures lift to these resolutions. Next, we introduce an inverse system of unstable Vassiliev spectral sequences whose limit includes, on its E ∞ - page, the classical finite-type invariants. Finally, we extend the definition of the Vassiliev derivative to all singularity types of plumbers' curves and use it to construct canonical chain representatives of the resolution of the Alexander dual for any invariant of plumbers' knots.
Committee in charge: Dev Sinha, Chairperson, Mathematics; Hal Sadofsky, Member, Mathematics; Arkady Berenstein, Member, Mathematics; Daniel Dugger, Member, Mathematics; Andrzej Proskurowski, Outside Member, Computer & Information Science
Styles APA, Harvard, Vancouver, ISO, etc.
10

Anderson, Curtis James. « Estimating the Optimal Extrapolation Parameter for Extrapolated Iterative Methods When Solving Sequences of Linear Systems ». University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1383826559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Silveira, Mariana Rodrigues da. « A dinamica por tras da sequencia espectral ». [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307546.

Texte intégral
Résumé :
Orientador: Ketty Abaroa de Rezende
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T21:02:39Z (GMT). No. of bitstreams: 1 Silveira_MarianaRodriguesda_D.pdf: 1531895 bytes, checksum: 3c73a8eb791483b1f0216d6f2627969b (MD5) Previous issue date: 2008
Resumo: Neste trabalho, apresentamos um algoritmo para um complexo de cadeias C e sua diferencial dada por uma matriz de conexão _ que determina uma seqüência espectral associada (Er, dr). Mais especificamente, um sistema gerador de Er em termos da base original de C é obtido bem como a identificação de todas as diferenciais dr p : Er p ! Er p-r. Explorando a implicação dinâmica da diferencial não nula, mostramos a existência de um caminho unindo a singularidade que gera E0 p e a singularidade que gera E0 p-r no caso em que a conexão direta pelo fluxo não existe. Este caminho é composto pela justaposição de órbitas do fluxo e do fluxo reverso e prova ser importante em algumas aplicações
Abstract: In this work, we present an algorithm for a chain complex C and its di_erential given by a connection matrix _ which determines an associated spectral sequence (Er, dr). More specifically, a system spanning Er in terms of the original basis of C is obtained as well as the identi_cation of all di_erentials dr p : Er p ! Er p-r. In exploring the dynamical implication of a nonzero di_erential, we prove the existence of a path joining the singularities generating E0 p and E0 p-r in the case that a direct connection by a _ow line does not exist. This path is made up of juxtaposed orbits of the _ow and of the reverse _ow and which proves to be importantin some applications
Doutorado
Geometria e Topologia/Sistemas Dinamicos
Doutor em Matemática
Styles APA, Harvard, Vancouver, ISO, etc.
12

Nascimento, Rangel Ferreira do. « Propagação de ondas usando modelos de elementos finitos de fatias de guias de ondas estruturais ». [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265401.

Texte intégral
Résumé :
Orientador: Jose Roberto de França Arruda
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-13T08:53:33Z (GMT). No. of bitstreams: 1 Nascimento_RangelFerreirado_D.pdf: 7547341 bytes, checksum: 0793f0ff7763f81b44868f59db73aab6 (MD5) Previous issue date: 2009
Resumo: Esta tese estuda e investiga o problema de propagação de ondas em estruturas periódicas usando o método de elemento espectral, a relação entre a matriz dinâmica e a matriz de transferência é mostrada para alguns casos, tais como, viga, barra, placa de Levy e modelo de Minddlin Hermman. A partir destas teorias, o método de propagação de ondas usando um modelo de elementos finitos de uma fatia do guia de ondas, WFEM é apresentado e o problema de prever os modos de propagação e os números de onda correspondentes. O objetivo deste trabalho é mostrar que usando o método WFEM e uma fatia do guia de onda modelado com elementos finitos sólido é possível construir elementos finitos espectrais para ser usado em guias de ondas homogêneos sem precisar de malha de refinamento. Tais elementos podem ser usados para modelar guias de ondas com seção transversal constante. A matriz de rigidez dinâmica para o elemento de barra elementar e para o elemento de viga de Euler Bernoulli são obtidos usando a formulação espectral padrão e obtidas usando uma fatia do guia de onda modelado pelo método FEM, são mostrados resultados do método proposto.
Abstract: This thesis, studies and investigates wave propagation problem in periodic structures using the spectral element method, the relation between the dynamic matrix and the transfer matrix is shown for some cases, such as, beam, bar, Levy plate and Mindlin-Herrmann's model. From these theories, the Wave Finite Element Method, WFEM is presented and the problem of predicting the wave propagation modes and the respective wavenumbers. The purpose of this work is to show that using the WFEM method and a slice of the waveguide modeled with solid finite elements, it is possible to develop spectral finite elements to be used in long homogeneous waveguides without the need of mesh refinement. Such elements can be used to model waveguides with constant cross section and long spans. The dynamic stiffness matrix of a simple rod and Bernoulli Euler beam element obtained using the standard spectral formulation and obtained via the FEM model of a slice are shown to be similar, thus validating the proposed method.
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Doutor em Engenharia Mecânica
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ullman, John Richard. « On the regular slice spectral sequence ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83701.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 217-218).
In this thesis, we analyze a variant of the slice spectral sequence of [HHR (or SSS) called the regular slice spectral sequence (or RSSS). This latter spectral sequence is defined using only the regular slice cells. We show that the regular slice tower of a spectrum is just the suspension of the slice tower of the desuspension of that spectrum. Hence, many results for the RSSS are equivalent to corresponding results for the SSS. However, the RSSS has many multiplicative properties that the SSS lacks. Also, the slice towers that have been computed prior to this thesis happen to coincide with the corresponding regular slice towers. Hence, we find the RSSS to be much better behaved than the SSS. We give a comprehensive study of its basic properties, including multiplicative structure, Toda brackets, interaction with the norm functor of [HHRJ, vanishing lines and preservation of various kinds of extra structure. We identify a large portion of the first page of the spectral sequence algebraically by relating the RSSS to the homotopy orbit and homotopy fixed point spectral sequences, and determine the edge homomorphisms. We also give formulas for the slice towers of various families of spectra, and give several sample computations. The regular slice tower for equivariant complex K-theory is used to prove a special case of the Atiyah-Segal completion theorem. We also prove two conjectures of Hill from [Hill concerning the slice towers of Eilenberg MacLane spectra, as well as spectra that are concentrated over a normal subgroup.
by John Richard Ullman.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Vieira, Ewerton Rocha 1987. « O complexo de Morse-Witten via sequências espectrais ». [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307541.

Texte intégral
Résumé :
Orientador: Ketty Abaroa de Rezende
Dissertação (mestrado) - Universidade Estadual de Campiknas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-17T15:05:58Z (GMT). No. of bitstreams: 1 Vieira_EwertonRocha_M.pdf: 3301438 bytes, checksum: 3fe2a609518ad6e7e190afc243b53ea4 (MD5) Previous issue date: 2011
Resumo: Nesse trabalho, estudaremos o complexo de Morse-Witten via sequências espectrais, utilizando a matriz de conexão sobre z que codifica as orbitas de conexão do uso de Morse associado ao complexo. O algoritmo do Método da Varredura aplicado à matriz de conexão sobre z produz uma sequência espectral (Er; dr), que por sua vez nos fornece informações importantes sobre a dinâmica. Dada a necessidade de computarmos os geradores dos -modulos Erp,q e as diferencias drp,q da seqüência espectral, utilizamos o software Sweeping Algorithm,que calcula os Erp,q e drp,q de forma rápida e eficiente. Apresentamos uma forma de estender o complexo de Morse-Witten, conforme [BaC1] e [BaC]. Tal complexo apresenta informações entre pontos críticos não consecutivos, ate então não obtidas pelo complexo de Morse-Witten. Para esse complexo estendido temos também uma seqüência espectral associada, através da qual obtemos informações dinâmicas, conforme os trabalhos [BaC1] e [BaC]
Abstract: In this work, we study the Morse-Witten Complex via spectral sequences, using the connection matrix over z, which codi_es the connecting orbits of the Morse ow associated to the complex. The Sweeping Method algorithm applied to the connection matrix over z produces a spectral sequence (Er; rd), which in turn gives us important information on the dynamics. Given the need to compute the generators of Z-modules Erp,q and the diferentials drp,q of the spectral sequence, we use the software Sweeping Algorithm, calculates Erp,q and drp,q quickly and efficiently. We present a way to extend the Morse-Witten as [BaC1] and [BaC]. This complex exhibits information between non-consecutive critical points, not obtainable using the Morse-Witten complex. For this extended Morse Complex we also have an associated spectral sequence, whereby dynamical information is also obtained as in [BaC1] and [BaC]
Mestrado
Mestre em Matemática
Styles APA, Harvard, Vancouver, ISO, etc.
15

Stover, Christopher Roy. « A van Kampen spectral sequence for higher homotopy groups ». Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/77697.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Markett, Simon A. « The Grayson spectral sequence for hermitian K-theory ». Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74068/.

Texte intégral
Résumé :
Let R be a regular ring such that 2 is invertible. We construct a spectral sequence converging to the hermitian K-theory, alias the Grothendieck-Witt theory, of R. In particular, we construct a tower for the hermitian K-groups in even shifts, whose terms are given by the hermitian K-theory of automorphisms. The spectral sequence arises as the homotopy spectral sequence of this tower and is analogous to Grayson’s version of the motivic spectral sequence [Gra95]. Further, we construct similar towers for the hermitian K-theory in odd shifts if R is a field of characteristic different from 2. We show by a counter example that the arising spectral sequence does not behave as desired. We proceed by proposing an alternative version for the tower and verify its correctness in weight 1. Finally we give a geometric representation of the (hermitian) K-theory of automorphisms in terms of the general linear group, the orthogonal group, or in terms of e-symmetric matrices, respectively. The K-theory of automorphisms can be identified with motivic cohomology if R is local and of finite type over a field. Therefore the hermitian K-theory of automorphisms as presented in this thesis is a candidate for the analogue of motivic cohomology in the hermitian world.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Shipley, Brooke E. (Brooke Elizabeth). « Convergence of the homology spectral sequence of a cosimplical space ». Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36626.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kronholm, William C. 1980. « The RO(G)-graded Serre Spectral Sequence ». Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/8284.

Texte intégral
Résumé :
x, 72 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
The theory of equivariant homology and cohomology was first created by Bredon in his 1967 paper and has since been developed and generalized by May, Lewis, Costenoble, and a host of others. However, there has been a notable lack of computations done. In this paper, a version of the Serre spectral sequence of a fibration is developed for RO ( G )-graded equivariant cohomology of G -spaces for finite groups G . This spectral sequence is then used to compute cohomology of projective bundles and certain loop spaces. In addition, the cohomology of Rep( G )-complexes, with appropriate coefficients, is shown to always be free. As an application, the cohomology of real projective spaces and some Grassmann manifolds are computed, with an eye towards developing a theory of equivariant characteristic classes.
Adviser: Daniel Dugger
Styles APA, Harvard, Vancouver, ISO, etc.
19

Vieira, Ewerton Rocha 1987. « Transition matrix theory = Teoria da matriz de transição ». [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307536.

Texte intégral
Résumé :
Orientador: Ketty Abaroa de Rezende
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T22:09:01Z (GMT). No. of bitstreams: 1 Vieira_EwertonRocha_D.pdf: 1632095 bytes, checksum: 5dc3208efc5649260ca62805c3e8e1b6 (MD5) Previous issue date: 2015
Resumo: Nessa tese, apresentamos uma unificação da teoria das matrizes de transição algébrica, singular, topológica e direcional ao introduzir a matriz de transição (generalizada), a qual engloba todas as quatros citadas anteriormente. Alguns resultados de existência são apresentados bem como a verificação de que cada matriz de transição supracitada são casos particulares da matriz de transição (generalizada). Além disso, nós abordamos como as aplicações das quatros matrizes de transiçao, na teoria do índice de Conley, se traduzem para a matriz de transição (generalizada). Quando a matriz de transição (generalizada) satisfizer o requerimento adicional de cobrir o isomorfismo do índice de Conley F definido pelo fluxo, pode-se provar propriedades de existência e de conexão de órbitas. Essa matriz de transição com a propriedade de cobrir o isomorfismo F é definida como matriz de transição topológica generalizada e a utilizamos para obter conexões de órbitas num fluxo Morse-Smale sem órbitas periódicas bem como para obter conexões de órbitas numa continuação associada à sequência espectral dinâmica
Abstract: In this thesis, we present a unification of the theory of algebraic, singular, topological and directional transition matrices by introducing the (generalized) transition matrix which encompasses each of the previous four. Some transition matrix existence results are presented as well as the verification that each of the previous transition matrices are cases of the (generalized) transition matrix. Furthermore, we address how applications of the previous transition matrices to the Conley Index theory carry over to the (generalized) transition matrix. When this more general transition matrix satisfies the additional requirement that it covers flow-defined Conley-index isomorphisms, one proves algebraic and connection-existence properties. These general transition matrices with this covering property are referred to as generalized topological transition matrices and are used to consider connecting orbits of Morse-Smale flows without periodic orbits, as well as those in a continuation associated to a dynamical spectral sequence
Doutorado
Matematica
Doutor em Matemática
Styles APA, Harvard, Vancouver, ISO, etc.
20

Andrews, Michael Joseph Ph D. Massachusetts Institute of Technology. « The v₁-periodic part of the Adams spectral sequence at an odd prime/ ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99328.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.
In title on title-page, "v" is italicized, and "1" is subscript. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 139-140).
We tell the story of the stable homotopy groups of spheres for odd primes at chromatic height 1 through the lens of the Adams spectral sequence. We find the "dancers to a discordant system." We calculate a Bockstein spectral sequence which converges to the 1-line of the chromatic spectral sequence for the odd primary Adams E₂-page. Furthermore, we calculate the associated algebraic Novikov spectral sequence converging to the 1-line of the BP chromatic spectral sequence. This result is also viewed as the calculation of a direct limit of localized modified Adams spectral sequences converging to the homotopy of the v1 -periodic sphere spectrum. As a consequence of this work, we obtain a thorough understanding of a collection of q₀-towers on the Adams E₂-page and we obtain information about the differentials between these towers. Moreover, above a line of slope 1/(p²-p-1) we can completely describe the E₂ and E₃ -pages of the mod p Adams spectral sequence, which accounts for almost all the spectral sequence in this range.
by Michael Joseph Andrews.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Donovan, Michael Jack. « Unstable operations in the Bousfield-Kan spectral sequence for simplicial commutative FF₂-algebras ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99327.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 219-222).
In this thesis we study the Bousfield-Kan spectral sequence (BKSS) in the Quillen model category sCom of simplicial commutative FF₂ -algebras. We develop a theory of unstable operations for this BKSS and relate these operations with the known unstable operations on the homotopy of the target. We also prove a completeness theorem and a vanishing line theorem which, together, show that the BKSS for a connected object of sCom converges strongly to the homotopy of that object. We approach the computation of the BKSS by deriving a composite functor spectral sequence (CFSS) which converges to the BKSS E2 -page. In fact, we generalize the construction of this CFSS to yield an infinite sequence of CFSSs, with each converging to the E2-page of the previous. We equip each of these CFSSs with a theory of unstable spectral sequence operations, after establishing the necessary chain-level structure on the resolutions defining the CFSSs. This technique may also yield operations on Blanc and Stover's generalized Grothendieck spectral sequences in other settings. We are able to compute the Bousfield-Kan E2-page in the most fundamental case, that of a connected sphere in sCom, using the structure defined on the CFSSs. We use this computation to describe the Ei-page of a May-Koszul spectral sequence which converges to the BKSS E2-page for any connected object of sCom. We conclude by making two conjectures which would, together, allow for a full computation of the BKSS for a connected sphere in sCom.
by Michael Jack Donovan.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Nguyen, Manh Toan [Verfasser], et Marc [Akademischer Betreuer] Levine. « On the equivariant motivic spectral sequences / Manh Toan Nguyen ; Betreuer : Marc Levine ». Duisburg, 2016. http://d-nb.info/1114661201/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Pasko, Brian Brownell. « The cohomology of a finite matrix quotient group ». Diss., Manhattan, Kan. : Kansas State University, 2006. http://hdl.handle.net/2097/184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Petrovic, Vojislav. « The K(n)-local E n-Adams Spectral Sequence and a Cohomological Approximation of its E2-term ». Thesis, University of Louisiana at Lafayette, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10623147.

Texte intégral
Résumé :

Let n ≥ 1 be any integer and let p be a prime number. For a profinite group G and any discrete abelian group M, we use Mapc(G, M ) to denote the abelian group of continuous functions from G to M. For the most part, our interests lie in a particular profinite group known as the extended Morava stabilizer group. Denoted by Gn, this profinite group is the semi-direct product of the Morava stabilizer group Sn with the Galois group of the field extension Fpn/ Fp.

The objects K(n)–the n-th Morava K-theory spectrum, En–the Lubin-Tate spectrum, and E(n)–the Johnson-Wilson spectrum, are essential to this dissertation. By using the setting of symmetric spectra, we provide a cohomological approximation of the E2-term of the K( n)-local En-Adams spectral sequence. Given any spectrum X, LK( n)(X) denotes the Bousfield localization of X with respect to K(n), while E *(X) denotes π*( LK(n)( En ∧ X)). For any discrete Gn-spectrum Y , (Y)fGn is used to denote a fibrant replacement of Y in the category of discrete Gn-spectra. Given any tower of generalized Moore spectra {Mi}i≥0 such that LK(n)(E n ∧ X) = holimi≥0 EnXMi, each Xi denotes a certain fibrant discrete Gn-spectrum that is weakly equivalent to E nXMi. We produce a long exact sequence in which for any s ≥ 0 the s-th row has Es,t 2, the E2-term of the K( n)-local En-Adams spectral sequence Es,t2(X) ⇒ π t(LK(n)( X)), as the middle term, Hscts( Gn; limi≥0πt( Xi)), the cohomology of continuous cochains with coefficients in the Gn-module limi≥0π t(Xi), as the term on the right, and Hs(lim1i≥0Mapc(G *n, πt+1( Xi))) as the term on the left. This result provides a tool for generalizing most known instances in which the E 2-term of the K(n)-local En-Adams spectral sequence is the continuous cohomology, and we maintain that this theorem has the potential to provide a generalization of all remaining known instances.

The term Hs(lim1 i≥0Mapc(G*n, π t+1(Xi))) plays a vital role in this dissertation, and in an attempt to simplify it, we provide an analysis of the relationship between the first derived functor of the inverse limit of non-negatively-graded towers of abelian groups and the functor Map c(G, –).

Styles APA, Harvard, Vancouver, ISO, etc.
25

Chatzigiannis, Georgios [Verfasser], et Christoph [Akademischer Betreuer] Wockel. « Topological and Algebraic Properties of Topological Group Cohomology and LHS-type Spectral Sequences / Georgios Chatzigiannis. Betreuer : Christoph Wockel ». Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/1093411392/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chatzigiannis, Georgios Verfasser], et Christoph [Akademischer Betreuer] [Wockel. « Topological and Algebraic Properties of Topological Group Cohomology and LHS-type Spectral Sequences / Georgios Chatzigiannis. Betreuer : Christoph Wockel ». Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://nbn-resolving.de/urn:nbn:de:gbv:18-77677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Woerden, Koenraad van [Verfasser], Justin [Akademischer Betreuer] Noel et Niko [Akademischer Betreuer] Naumann. « Some computations with the F-homotopy limit spectral sequence / Koenraad van Woerden ; Justin Noel, Niko Naumann ». Regensburg : Universitätsbibliothek Regensburg, 2017. http://d-nb.info/1140642081/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Oehme, Markus [Verfasser], David J. [Gutachter] Green et Hans-Werner [Gutachter] Henn. « The Eilenberg-Moore spectral sequence in group cohomology / Markus Oehme ; Gutachter : David J. Green, Hans-Werner Henn ». Jena : Friedrich-Schiller-Universität Jena, 2018. http://d-nb.info/1170399258/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Naarmann, Simon [Verfasser], Thomas [Akademischer Betreuer] Schick, Thomas [Gutachter] Schick et Ralf [Gutachter] Meyer. « A Mayer-Vietoris Spectral Sequence for C*-Algebras and Coarse Geometry / Simon Naarmann ; Gutachter : Thomas Schick, Ralf Meyer ; Betreuer : Thomas Schick ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/118337481X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Schneider, Matti [Verfasser], Matthias [Akademischer Betreuer] Schwarz et Alberto [Gutachter] Abbondandolo. « The Leray-Serre spectral sequence in Morse homology on Hilbert manifolds and in Floer homology on cotangent bundles / Matti Schneider ; Gutachter : Alberto Abbondandolo ; Betreuer : Matthias Schwarz ». Leipzig : Universitätsbibliothek Leipzig, 2013. http://d-nb.info/123824257X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Rodrigues, Claudenir Freire. « Grupos abelianos-por-nilpotentes do tipo homologico 'FP IND.3' ». [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306915.

Texte intégral
Résumé :
Orientador: Dessislava H. Kochloukova
Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-07T18:15:42Z (GMT). No. of bitstreams: 1 Rodrigues_ClaudenirFreire_D.pdf: 1150293 bytes, checksum: 63045fd15f6ef421699cbcf26de55d92 (MD5) Previous issue date: 2006
Resumo: Neste trabalho estudamos grupos abstratos finitamente gerados G que são extensões cindidas de um grupo abeliano A por um grupo Q nilpotente de classe 2. Mostramos que se G tem tipo homológico F P3, então o quociente G/N também tem tipo homológico F P3 onde N é o fecho normal do centro de Q em G. Observamos que não existe classificação quando G pode ter tipo FP3, nem classificação para tipo F P2 ou ser finitamente apresentável. Por causa disso nós trabalhamos com um quociente especifico de G. Ainda fica em aberto se cada quociente de G tem tipo FP3 quando G tem tipo FP3. Observamos que isso vale quando G é grupo metabeliano, nesse caso a teoria de Bieri-Strebel pode ser aplicada
Abstract: We study abstract finitely generated groups G that are split extensions from A abelian group by Q nilpotent group of class two. We show that if G has homological type FP3 then the quotient group GjN has homological type FP3 too, where N is the normal closure of the center of Q in G. Since there is no classification when G is of type FP3, nor when G is of type FP2 or finitely presented we work with one specific quotient. It is an open problem whether every quotient of G has type F P3. This holds if G is a metabelian group and in this case the Bieri-Strebel theory applies
Doutorado
Doutor em Matemática
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sendrowski, Janek. « Feigenbaum Scaling ». Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96635.

Texte intégral
Résumé :
In this thesis I hope to provide a clear and concise introduction to Feigenbaum scaling accessible to undergraduate students. This is accompanied by a description of how to obtain numerical results by various means. A more intricate approach drawing from renormalization theory as well as a short consideration of some of the topological properties will also be presented. I was furthermore trying to put great emphasis on diagrams throughout the text to make the contents more comprehensible and intuitive.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ray, Samarpita. « Some results on Spectral spaces and Spectral sequences ». Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5128.

Texte intégral
Résumé :
This thesis is made up of two independent parts. We begin the first part by showing that the collection of all prime ideals of a monoid or, in other words, the spectrum of a commutative monoid, endowed with the Zariski topology is homeomorphic to the spectrum of a ring, i.e., it is a spectral space. Spectral spaces were introduced by M. Hochster and are widely studied in the literature. On the other hand, the theory of monoids became relevant in the context of what is known as “absolute algebraic geometry”. In this work, we present several naturally occurring classes of spectral spaces using commutative algebra on pointed monoids. We prove that the collection of all ideals as well as the collection of all proper ideals of a monoid are also spectral spaces. The notion of A-sets over a monoid A is the analogue of the notion of modules over a ring. We introduce closure operations on monoids and thereby obtaining natural classes of spectral spaces using finite type closure operations on A-sets. In the process, different notions of closure operations like integral, saturation, Frobenius and tight closures are introduced for monoids inspired by the corresponding closure operations on rings from classical commutative algebra. We also study their persistence and localization properties in detail. Next, we make a study of valuation on monoids and prove that the collection of all valuation monoids having the same group completion forms a spectral space. We also prove that the valuation spectrum of any monoid gives a spectral space. Finally, we prove that the collection of continuous valuations on a topological monoid whose topology is determined by any finitely generated ideal also gives a spectral space. The other part of this thesis is on categorical generalization of certain results in Hopf algebra theory. This relies on the celebrated “ring with several objects” interpretation of a small preadditive category introduced by B. Mitchell. In this framework, “H-category” plays the role of a Hopf module algebra and similarly co-H-category generalizes a Hopf comodule algebra. These Hopf module categories were first considered by Cibils and Solotar. In our work, we study cohomology of certain relevant classes of modules over H-category and co-H-category using Grothendieck spectral sequences.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ouahada, Khmaies Taher. « Spectral shaping and distance mapping with permutation sequences ». Thesis, 2012. http://hdl.handle.net/10210/4800.

Texte intégral
Résumé :
D.Ing.
In this thesis we combined two techniques, namely a spectral shaping technique and a distance-preserving mapping technique to design new codes with both special spectrum shaping and error correction capabilities, in order to overcome certain communication problems like those that occur in a power-line communication channel. A new distance-preserving mapping construction based on graph theory is firstly presented. The k-cube graph construction from binary sequences to permutation sequences reached the upper bound on the sum of the Hamming distances for certain lengths of the permutation sequences and achieves the same sum of the Hamming distances as the best previously published constructions for most of the rest of the lengths. The k-cube graph construction is considered to be a simple and easy construction to understand the concept of mappings and especially the concept of a distance-reducing mapping.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Qureshi, Sumaira Ejaz. « Bioinformatics developments in the longest common sub-sequence problem and the application of spectral envelopes ». Phd thesis, 2009. http://hdl.handle.net/1885/149941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

(11204136), Chris Karl Neuffer. « Genera of Integer Representations and the Lyndon-Hochschild-Serre Spectral Sequence ». Thesis, 2021.

Trouver le texte intégral
Résumé :
There has been in the past ten to fifteen years a surge of activity concerning the cohomology of semi-direct product groups of the form $\mathbb{Z}^{n}\rtimes$G with G finite. A problem first stated by Adem-Ge-Pan-Petrosyan asks for suitable conditions for the Lyndon-Hochschild-Serre Spectral Sequence associated to this group extension to collapse at second page of the Lyndon-Hochschild-Serre spectral sequence. In this thesis we use facts from integer representation theory to reduce this problem to only considering representatives from each genus of representations, and establish techniques for constructing new examples in which the spectral sequence collapses.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Smit, Joukje Anneke. « Koliha–Drazin invertibles form a regularity ». Diss., 2010. http://hdl.handle.net/10500/4905.

Texte intégral
Résumé :
The axiomatic theory of ` Zelazko defines a variety of general spectra where specified axioms are satisfied. However, there arise a number of spectra, usually defined for a single element of a Banach algebra, that are not covered by the axiomatic theory of ` Zelazko. V. Kordula and V. M¨uller addressed this issue and created the theory of regularities. Their unique idea was to describe the underlying set of elements on which the spectrum is defined. The axioms of a regularity provide important consequences. We prove that the set of Koliha-Drazin invertible elements, which includes the Drazin invertible elements, forms a regularity. The properties of the spectrum corresponding to a regularity are also investigated.
Mathematical Sciences
M. Sc. (Mathematics)
Styles APA, Harvard, Vancouver, ISO, etc.
38

Naarmann, Simon. « A Mayer-Vietoris Spectral Sequence for C*-Algebras and Coarse Geometry ». Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E5FF-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie