Littérature scientifique sur le sujet « Spinal cord computational model »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Spinal cord computational model ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Spinal cord computational model"

1

Arle, Jeffrey E., Nicolae Iftimia, Jay L. Shils, Longzhi Mei, and Kristen W. Carlson. "Dynamic Computational Model of the Human Spinal Cord Connectome." Neural Computation 31, no. 2 (2019): 388–416. http://dx.doi.org/10.1162/neco_a_01159.

Texte intégral
Résumé :
Connectomes abound, but few for the human spinal cord. Using anatomical data in the literature, we constructed a draft connectivity map of the human spinal cord connectome, providing a template for the many calibrations of specialized behavior to be overlaid on it and the basis for an initial computational model. A thorough literature review gleaned cell types, connectivity, and connection strength indications. Where human data were not available, we selected species that have been studied. Cadaveric spinal cord measurements, cross-sectional histology images, and cytoarchitectural data regardi
Styles APA, Harvard, Vancouver, ISO, etc.
2

Akanksha Kaushik. "A Computational Neural Network Model Depicting Bradykinesia in Parkinson’s Disease." Journal of Information Systems Engineering and Management 10, no. 42s (2025): 1203–30. https://doi.org/10.52783/jisem.v10i42s.8656.

Texte intégral
Résumé :
Parkinson's disease (PD) is caused by a deficiency of dopamine (DA) as a result of cell death in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Though most computational studies of Parkinson's disease (PD) have concentrated on the effects of dopamine depletion in the basal ganglia, it's crucial to remember that the spinal cord, frontal and parietal cortex, and other areas have considerable dopamine innervation. A network model must be created to investigate how patterns of dopamine depletion across important cellular sites in the spinal cord, cortex, and basal gangl
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shevtsova, Natalia A., Erik Z. Li, Shayna Singh, Kimberly J. Dougherty, and Ilya A. Rybak. "Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling." International Journal of Molecular Sciences 23, no. 10 (2022): 5541. http://dx.doi.org/10.3390/ijms23105541.

Texte intégral
Résumé :
We describe and analyze a computational model of neural circuits in the mammalian spinal cord responsible for generating and shaping locomotor-like oscillations. The model represents interacting populations of spinal neurons, including the neurons that were genetically identified and characterized in a series of previous experimental studies. Here, we specifically focus on the ipsilaterally projecting V1 interneurons, their possible role in the spinal locomotor circuitry, and their involvement in the generation of locomotor oscillations. The proposed connections of these neurons and their invo
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jérusalem, Antoine, Julián A. García-Grajales, Angel Merchán-Pérez, and José M. Peña. "A computational model coupling mechanics and electrophysiology in spinal cord injury." Biomechanics and Modeling in Mechanobiology 13, no. 4 (2013): 883–96. http://dx.doi.org/10.1007/s10237-013-0543-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pithapuram, Madhav Vinodh, and Mohan Raghavan. "Automatic rule-based generation of spinal cord connectome model for a neuro-musculoskeletal limb in-silico." IOP SciNotes 3, no. 1 (2022): 014001. http://dx.doi.org/10.1088/2633-1357/ac585e.

Texte intégral
Résumé :
Abstract Studying spinal interactions with muscles has been of great importance for over a century. However, with surging spinal-related movement pathologies, the need for computational models to study spinal pathways is increasing. Although spinal cord connectome models have been developed, anatomically relevant spinal neuromotor models are rare. However, building and maintaining such models is time-consuming. In this study, the concept of the rule-based generation of a spinal connectome was introduced and lumbosacral connectome generation was demonstrated as an example. Furthermore, the rule
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lempka, Scott F., Cameron C. McIntyre, Kevin L. Kilgore, and Andre G. Machado. "Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management." Anesthesiology 122, no. 6 (2015): 1362–76. http://dx.doi.org/10.1097/aln.0000000000000649.

Texte intégral
Résumé :
Abstract Background: Kilohertz frequency spinal cord stimulation (KHFSCS) is an emerging therapy for treating refractory neuropathic pain. Although KHFSCS has the potential to improve the lives of patients experiencing debilitating pain, its mechanisms of action are unknown and thus it is difficult to optimize its development. Therefore, the goal of this study was to use a computer model to investigate the direct effects of KHFSCS on specific neural elements of the spinal cord. Methods: This computer model consisted of two main components: (1) finite element models of the electric field genera
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bilston, Lynne E., Marcus A. Stoodley, and David F. Fletcher. "The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development." Journal of Neurosurgery 112, no. 4 (2010): 808–13. http://dx.doi.org/10.3171/2009.5.jns08945.

Texte intégral
Résumé :
Object The mechanisms of syringomyelia have long puzzled neurosurgeons and researchers alike due to difficulties in identifying the driving forces behind fluid flow into a syrinx, apparently against a pressure gradient between the spinal cord and the subarachnoid space (SAS). Recently, the synchronization between CSF flow and the cardiac cycle has been postulated to affect fluid flow in the spinal cord. This study aims to determine the effect of changes in the timing of SAS pressure on perivascular flow into the spinal cord. Methods This study uses a computational fluid dynamics model to inves
Styles APA, Harvard, Vancouver, ISO, etc.
8

Solanes, Carmen, Jose L. Durá, M. Ángeles Canós, Jose De Andrés, Luis Martí-Bonmatí, and Javier Saiz. "3D patient-specific spinal cord computational model for SCS management: potential clinical applications." Journal of Neural Engineering 18, no. 3 (2021): 036017. http://dx.doi.org/10.1088/1741-2552/abe44f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sarntinoranont, Malisa, Rupak K. Banerjee, Russell R. Lonser, and Paul F. Morrison. "A Computational Model of Direct Interstitial Infusion of Macromolecules into the Spinal Cord." Annals of Biomedical Engineering 31, no. 4 (2003): 448–61. http://dx.doi.org/10.1114/1.1558032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sarntinoranont, Malisa, Xiaoming Chen, Jianbing Zhao, and Thomas H. Mareci. "Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging." Annals of Biomedical Engineering 34, no. 8 (2006): 1304–21. http://dx.doi.org/10.1007/s10439-006-9135-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Spinal cord computational model"

1

Parziale, Antonio. "A neurocomputational model of reaching movements." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2341.

Texte intégral
Résumé :
2013 - 2014<br>How the brain controls movement is a question that has fascinated researchers from different areas as neuroscience, robotics and psychology. To understand how we move is not only an intellectual challenge, but it is important for finding new strategies for nursing people with movement diseases, for rehabilitation and to develop new robotic technology. While there is an agreement about the role of the primary motor cortex (M1) in the execution of voluntary movements, it is still debated what (and how) is encoded by the neural activity of the motor cortex. To unveil the "c
Styles APA, Harvard, Vancouver, ISO, etc.
2

Altas, Melanie. "Spinal cord transplants in a rat model of spinal cord injury." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0021/MQ49305.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bhatnagar, Timothy. "Quantification of morphological changes of the cervical spinal cord during traumatic spinal cord injury in a rodent model." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52175.

Texte intégral
Résumé :
Traumatic spinal cord injury initiates a complex pathophysiological process that eventually manifests as persistent tissue damage and possible permanent loss of neurologic function. Current experimental models are limited to measuring the gross mechanical response of the spinal cord during injury; thus, little is known about how the internal tissues of the spinal cord deform during injury. The general aims of this research were to develop a method to observe the internal deformations of the in vivo rat spinal cord during clinically-relevant injury models and to determine if the patterns of def
Styles APA, Harvard, Vancouver, ISO, etc.
4

Fukuda, Seijun. "New canine spinal cord injury model free from laminectomy." Kyoto University, 2006. http://hdl.handle.net/2433/135626.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lucas, Erin. "Measuring in vivo internal spinal cord deformations during experimental spinal cord injury using a rat model, radiography, and fiducial markers." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/27808.

Texte intégral
Résumé :
Spinal cord injuries (SCIs) are commonly studied experimentally by causing injury to rodent spinal cords in vivo and analyzing behavioral and histological results post injury. Few researchers have directly investigated the deformation of the in vivo spinal cord during impact, which is thought to be a predictor of injury. This knowledge would help to establish correlations among impact parameters, internal structure deformation, and histological and functional outcomes. The objective of this thesis was to develop a radiographic method of tracking the real-time internal deformations of an anesth
Styles APA, Harvard, Vancouver, ISO, etc.
6

Prince, Karen. "The computational modelling of the spinal cord neurons involved in the pain process." Thesis, University of Northampton, 2006. http://nectar.northampton.ac.uk/2696/.

Texte intégral
Résumé :
Pain is a personal subjective experience with physiological and psychological components and involves many complex processes. In 1965 Melzack and Wall proposed the influential gate control theory (GCT) of pain and, in general, this has been supported by subsequent research. This theory postulates that cells in the substantia gelatinosa, located within the spinal cord, act like a gate mechanism that modulates the flow of information through the spinal cord to the brain and thus impacts on the pain experience. The abundance of literature and experimental data that is available from pain research
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sowd, Matthew Michael. "Analyzing Non-Unique Parameters in a Cat Spinal Cord Motoneuron Model." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11545.

Texte intégral
Résumé :
When modeling a neuron, modelers often focus on the values of parameters that produce a desired output. However, if these parameters are not unique, there could be a number of parameter sets that produce the same output. Thus, even though the values of the various maximum conductances, half activation voltages and so on differ, as a set they can produce the same spike height, firing rates, and so forth. To examine whether or not parameter sets are unique, a 3-compartment motoneuron model was created that has 15 target outputs and 59 parameters. Using parameter searches, over one hundred
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rogers, A. T. "Spinal cord cell culture : a model for neuronal development and disease." Thesis, University of Bath, 1988. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Hsiao-Yu. "Developing a model of spinal cord injury rehabilitation nursing using grounded theory." Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Corkill, Dominic John. "Endothelin-1 induced focal ischaemia : a novel model of spinal cord injury." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Spinal cord computational model"

1

National Consensus Conference on Catastrophic Illness and Injury (1989 Atlanta, Ga.). Spinal cord injury: The model. s.n.], 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

L, Stover S., DeLisa Joel A, and Whiteneck Gale G, eds. Spinal cord injury: Clinical outcomes from the model systems. Aspen Publications, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Hsiao-Yu. Developing a model of spinal cord injury rehabilitation nursing using Grounded Theoryy. The Author], 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Joshi, Mital. Development and characterization of a graded, in vivo, compressive, murine model of spinal cord injury. National Library of Canada, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Scheumann, Johannes. Staged approach prevents spinal cord injury in hybrid surgical-endovascular thoracoabdominal aortic aneurysm repair: An experimental model. s.n.], 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Gui Lin. Spinal cord compression trauma: Studies of lesions to axons and dendrites in a rat model and in human autopsy material. Uppsala Universitet, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Taehakkyo, Yŏnse. Noe, ch'ŏksu sonsang model esŏ chungch'u sin'gyŏng chaesaeng ŭl wihan chulgi sep'o rŭl iyong han tamyŏnjŏk ch'iryo kisul ŭi kaebal =: The multidisciplinary therapeutic strategies for CNS regeneration with stem cell transplantation in brain and spinal cord injury model. Pogŏn Pokchibu, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Takao, Kumazawa, Kruger Lawrence, and Mizumura Kazue, eds. The polymodal receptor: A gateway to pathological pain. Elsevier, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Becker, Catherina G., and Thomas Becker, eds. Model Organisms in Spinal Cord Regeneration. Wiley, 2006. http://dx.doi.org/10.1002/9783527610365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Model organisms in spinal cord regeneration. Wiley-VCH, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Spinal cord computational model"

1

Loeb, Gerald E. "Spinal Cord, Integrated (Non CPG) Models of." In Encyclopedia of Computational Neuroscience. Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_648.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loeb, Gerald E. "Spinal Cord, Integrated (Non CPG) Models of." In Encyclopedia of Computational Neuroscience. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_648-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Danner, Simon M., Ursula S. Hofstötter, and Karen Minassian. "Finite Element Models of Transcutaneous Spinal Cord Stimulation." In Encyclopedia of Computational Neuroscience. Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Minassian, Karen, Ursula S. Hofstoetter, and Simon M. Danner. "Finite Element Models of Transcutaneous Spinal Cord Stimulation." In Encyclopedia of Computational Neuroscience. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7320-6_604-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Danner, Simon M., Ursula S. Hofstoetter, and Karen Minassian. "Finite Element Models of Transcutaneous Spinal Cord Stimulation." In Encyclopedia of Computational Neuroscience. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_604-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tan, Daniel, Stuart I. Hodgetts, Sarah Dunlop, Karol Miller, Koshiro Ono, and Adam Wittek. "Computational Biomechanics Model for Analysis of Cervical Spinal Cord Deformations Under Whiplash-Type Loading." In Computational Biomechanics for Medicine. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70123-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Greiner, Nathan, and Marco Capogrosso. "Anatomically Realistic Computational Model to Assess the Specificity of Epidural Electrical Stimulation of the Cervical Spinal Cord." In Converging Clinical and Engineering Research on Neurorehabilitation III. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01845-0_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Young, Wise. "MASCIS Spinal Cord Contusion Model." In Springer Protocols Handbooks. Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-185-1_35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Brewer, Kori L., and Robert P. Yezierski. "Spinal Cord Injury, Excitotoxic Model." In Encyclopedia of Pain. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_4117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Light, Alan R., and Charles J. Vierck. "Spinal Cord Injury Pain Model, Cordotomy Model." In Encyclopedia of Pain. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_4113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Spinal cord computational model"

1

Qie, Botao, Xin Guo, and Wei Chen. "A Diagnosis Model for Rehabilitation Training Prescription for Spinal Cord Injury Patients Based on Multi-label Classification." In 2024 8th International Symposium on Computer Science and Intelligent Control (ISCSIC). IEEE, 2024. https://doi.org/10.1109/iscsic64297.2024.00028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Miranda, Pedro C., Ricardo Salvador, Cornelia Wenger, and Sofia R. Fernandes. "Computational models of non-invasive brain and spinal cord stimulation." In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7592207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Balaguer, Josep-Maria, and Marco Capogrosso. "A Computational Model of the Interaction Between Residual Cortico-Spinal Inputs and Spinal Cord Stimulation After Paralysis." In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021. http://dx.doi.org/10.1109/ner49283.2021.9441219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kim, Jung Hwan, Xiaoming Chen, Garrett W. Astary, Thomas H. Mareci, and Malisa Sarntinoranont. "Computational Model of Direct Injection Into the Spinal Cord Using in Vivo Diffusion Tensor Imaging." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193114.

Texte intégral
Résumé :
Local infusion, i.e., convection-enhanced delivery (CED), is increasingly being considered as a means to deliver therapeutic agents to nervous tissues. These infusion techniques bypass the blood-brain barrier and overcome problems associated with slow diffusion [1, 2]. Predictive models of extracellular fluid flow and transport during and following CED would be useful in treatment optimization and planning. To account for large infusion volumes, such infusion models should incorporate tissue boundaries and anisotropic tissue properties.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sullivan, Sarah R., Noshir A. Langrana, and Sue Ann Sisto. "Multibody Computational Biomechanical Model of the Upper Body." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84809.

Texte intégral
Résumé :
In the United States alone, more than 10,000 spinal cord injuries (SCI) are reported each year. This population depends upon their upper limbs to provide a means of locomotion during completion of their activities of daily living. As a result of greater than normal usage of the upper limbs, proper propulsion mechanics are paramount in preventing injuries. Upper limb pain and pathology is common among manual wheelchair users due to the requirements placed on the arms for wheelchair locomotion. During the wheelchair rehabilitation process following an SCI, an individual is prescribed a wheelchai
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kim, Jung Hwan, Garrett W. Astary, Thomas H. Mareci, and Malisa Sarntinoranont. "A Computational Model of Direct Infusion Into the Rat Brain: Corpus Callosum and Hippocampus." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205945.

Texte intégral
Résumé :
Despite the high therapeutic potential of many macromolecular drugs, it has proven difficult to apply them to treatment of cancer and other degenerative diseases of the central nervous system (CNS) due to low capillary permeability and low diffusivity. To overcome these barriers, recent experimental studies have shown local infusion, i.e., convection-enhanced delivery (CED), to be a promising delivery technique in the brain and spinal cord [1–3]. Predictive models of extracellular fluid flow and transport during CED would be useful for treatment optimization and planning.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fang, Xiaoqi, Scott Collins, Ameya C. Nanivadekar, Maria Jantz, Robert A. Gaunt, and Marco Capogrosso. "An Open-source Computational Model of Neurostimulation of the Spinal Pudendo-Vesical Reflex for the Recovery of Bladder Control After Spinal Cord Injury." In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Roldán, Alejandro, Victor Haughton, Tim Osswald, and Naomi Chesler. "Computational Analysis of Cerebrospinal Fluid Flow in the Normal and Obstructed Subarachnoid Space." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192762.

Texte intégral
Résumé :
Patients with Chiari I malformations have increased cerebrospinal fluid (CSF) velocities compared to subjects without the malformation. Improved methods of analyzing the CSF fluid dynamics are needed to evaluate the impact of increased fluid velocities on pressure differentials in the upper cervical spinal canal and the potential impact of surgery on flow dynamics in patient-specific geometries. Here, a numerical technique based on the boundary elements method (BEM) for modeling the CSF flow within the spinal canal is presented. Results for velocity and pressure throughout the spinal canal wer
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kim, Jung Hwan, Thomas H. Mareci, and Malisa Sarntinoranont. "Computational Model of Interstitial Transport in the Rat Brain Using Diffusion Tensor Imaging." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176633.

Texte intégral
Résumé :
In spite of the high therapeutic potential of macromolecular drugs, it has proven difficult to apply them to recovery after injury and treatment of cancer, Parkinson’s disease, and other neurodegenerative diseases. One barrier to systemic administration is low capillary permeability, i.e., the blood-brain and blood-spinal cord barrier. To overcome this barrier, convection-enhanced delivery (CED) infuses agents directly into tissue to supplement diffusion and increase the distribution of large molecules in the brain [1,2]. Predictive models of distribution during CED would be useful in treatmen
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ramo, Nicole L., Snehal S. Shetye, and Christian M. Puttlitz. "Damage Accumulation Modeling and Rate Dependency of Spinal Dura Mater." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71007.

Texte intégral
Résumé :
As the strongest of the meningeal tissues, the spinal dura mater plays an important role in the overall behavior of the spinal cord-meningeal complex (SCM). It follows that the accumulation of damage affects the dura mater’s ability to protect the cord from excessive mechanical loads. Unfortunately, current computational investigations of spinal cord injury etiology typically do not include post-yield behavior. Therefore, a more detailed description of the material behavior of the spinal dura mater, including characterization of damage accumulation, is required to comprehensively study spinal
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Spinal cord computational model"

1

Floyd, Candance. Effect of Antidepressant Therapy on Psychological Health, Rehabilitation, Plasticity, and Functional Recovery After Spinal Cord Injury in a Rodent Model. Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada555211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Qin, Weiping. Anabolic Steroids as a Novel Therapeutic Strategy for the Prevention of Bone Loss after Spinal Cord Injury: Animal Model and Molecular Mechanism. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada591955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!