Littérature scientifique sur le sujet « Stratigraphie – Iran »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Stratigraphie – Iran ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Stratigraphie – Iran":

1

Soltan, Basim H. « Petrology and stratigraphy of pre-Cambrian Hormuz Series outcrops in Jabal Sanam structure - the oldest surface rocks in Iraq ». BASRA JOURNAL OF SCIENCE 38, no 3 (1 août 2020) : 497–520. http://dx.doi.org/10.29072/basjs.202039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Detailed geological field investigations have been done at Jabal Sanam structure Southern Iraq. More than 150 rock and mineral represented samples were collected, and 130 thin sections of these samples were prepared and examined microscopically. An accurate mineralogical study of these rocks by analysis of 15 samples with the X-ray diffraction technique was achieved. A large number of sedimentary rocks were distinguished through field observations and petrographic studies, such as gypsum, limestone, dolomite, red and green marl, sedimentary ironstones, chert, and salts. Various types of igneous and metamorphic rocks such as dolerite, schist, slate, and metamorphic sediments were found as beds or fragments intruded with the evaporite rocks of Jabal Sanam. Distinct mineralizations of hematite, pyrite, and dolomite minerals were observed in these successions. It was noted also, that these rocks were subjected to varied geological processes of different degrees that affected their original rock characteristics such as diagenesis, metamorphism, deformation, and dissolution processes. A petrological, stratigraphic, and tectonic correlation has been made with similar structures spread through the region (Iran and Arabian Peninsula) in the light of their composition which, in general; consists of infra-Cambrian evaporates of Hormuz Series. This study supports the previous geological studies on this salt structure, shows a great similarity between the rocks of Hormuz Series Complex and those of Jabal Sanam, which may be considered in terms of stratigraphy and petrology as equivalent rock units. Thus, these rocks may be suggested as the oldest rocks exposed above the earth’s surface in Iraq
2

Abd, Omnia, et Najah Abd. « Seismic Sequence Stratigraphic Model and Hydrocarbon Potential of Yamama Formation in Al-Fao Area, Southeastern Iraq ». Iraqi Geological Journal 57, no 1A (31 janvier 2024) : 56–69. http://dx.doi.org/10.46717/igj.57.1a.6ms-2024-1-17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
One key step when interpreting seismic reflection data is sequence stratigraphy, which has improved with well logs and seismic data. By analyzing the different layers of sediment and rock, we can better understand the geologic history of an area and make more accurate predictions for hydrocarbon exploration. The current research focuses on interpreting seismic lines from the 2D seismic surveys conducted in the Al-Fao area and data from wells in the Siba gas field to construct a stratigraphic model within the Yamama Formation, to identify hydrocarbon traps and determine the most promising zones for hydrocarbon exploration. Yamama Formation is divided into two main units representing transgressive and regressive facies deposited in highstand system tract. Six seismic facies were identified (wavy, mound shape, oblique parallel, sigmoid, chaotic, and parallel), which reflected the deposition of Yamama Formation in a ramp setting with a gentle slope. Instantaneous phase attribute was utilized, which focused on the lateral changes of seismic facies and provided detailed information about the architecture of Yamama Formation depositional basin. The results of the seismic attributes analysis included identifying carbonate buildups and progradation stacking patterns with the presence of direct hydrocarbon indicator. Three main seismic stratigraphic indexes representing potential stratigraphic traps have been identified. These three stratigraphic features reflect the facies of shoal carbonate sediments in the last depositional cycle of Yamama Formation (Highstand). The stratigraphic model showed the best image of the depositional environment of Yamama Formation that corresponds with the seismic data interpretation and identifies the promising hydrocarbon traps.
3

Soltani, B., H. Rahimpour-Bonab et M. Ranjbaran. « Regional Stratigraphic correlation and comparison of the Oligo-Miocene deposits in Dezful (SW Iran) and Kirkuk (N and NE-Iraq) embayments ». Journal of Zankoy Sulaimani - Part A 15, no 3 (25 juin 2013) : 77–93. http://dx.doi.org/10.17656/jzs.10260.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

SAEIN, ALI FARZIPOUR, et ZAHRA TAJMIR RIAHI. « Controls on fracture distribution in Cretaceous sedimentary rocks from the Isfahan region, Iran ». Geological Magazine 156, no 06 (25 mai 2017) : 1092–104. http://dx.doi.org/10.1017/s0016756817000346.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractIn this study, relationships between fracture patterns, lithology, thickness, diagenetic processes and grain size are evaluated within Cretaceous sediments in two sections of Dizlu and Kolah Ghazi of Isfahan. This study area was selected based on its outcrops of different rock units and its well-developed tectonic fractures. The fracture patterns within stratigraphic units of these sections are studied using geometrical and statistical analyses. This study finds that variable fracture spacing and fracture spacing ratios can be affected by lithology, thickness, grain size of sediments and diagenetic processes. A study of fracture stratigraphy based on fracture pattern evaluation within different cropped-out sedimentary rocks can be used to improve understanding of the same types of sedimentary rock units below the surface or throughout other sedimentary basins. Consequently, this could improve information regarding storage and fluid flow pattern throughout sedimentary rocks in different regions, even for subsurface purposes.
5

Al-Hadidy, Aboosh, Adnan Mahdi, Doaa Fadhil et Mustafa Theyab. « The Lower Silurian (Hot Shale) Source Rocks of Western Iraq : Depositional Model and Stratigraphic Distribution ». Iraqi Geological Journal 56, no 1A (31 janvier 2023) : 18–28. http://dx.doi.org/10.46717/igj.56.1a.3ms-2023-1-15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The Hoseiba Member, an Early Silurian basal mature hot shale of the Akkas Formation (Silurian) consists of about 80% of the Paleozoic hydrocarbon potential system, it is organic-rich with total organic carbon up to 16% as the main source for the Paleozoic gas resources in Iraq. The hot shale is the main source of rocks that are penetrated in deep wells in the western Iraqi desert such as Akkas-1, Qaim-1, and Khleisia -1, which are distributed due to paleo uplift in the restricted regional basin in the west, south, and northwest Iraqi desert and wedged to north thrust zone in Ora area of extreme northern Iraq, Ora subbasin to Aljezira NW and in the west where the approved source rocks of ‘Hot shale” Akkas -Widyian subbasin (Rephrase). The Hoseiba Member, basal hot shale in the Akkas Formation in Iraq and their correlative units are extended within neighboring countries Jordan, Syria, Saudi Arabia, Iran, Oman, and south Turkey. Qualitative and quantity of Hot Shales source rocks Silurian are Excellent in Akkas well -1 (0.95-16.62%) TOC in Akk-1 Akkas sub-basin west Iraq and an average thickness (30 m.) with 1-9.94% TOC in Kh-1 Al-Jezira sub-basin NW Iraq. The hot shale distribution was controlled by the Caledonian uplift that created paleo-high in northern Iraq and moderately deep to the northwest, and deep depression deposition in west and south desert Iraq. The hot shale expulsion and migration of hydrocarbon are controlled by the underlying main reservoir of the Khabour Formation K1 sandstone ember by block faulting
6

Al-Hadidy, Aboosh H. « Paleozoic stratigraphic lexicon and hydrocarbon habitat of Iraq ». GeoArabia 12, no 1 (1 janvier 2007) : 63–130. http://dx.doi.org/10.2113/geoarabia120163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
ABSTRACT The crystalline Proterozoic Basement does not crop out in Iraq, but is interpreted from seismic and geophysical potential data to range in depth from about 6–10 km in western Iraq, to 12–15 km in the Zagros Mountains, in eastern Iraq. The Cambrian and Lower Ordovician sedimentary successions of Jordan and Saudi Arabia (including the Middle Cambrian Burj carbonates) are interpreted to extend into Iraq based on seismic data and regional correlations. The entire Paleozoic succssion is about 3–4 km thick. The Ordovician-Permian succession in Iraq consists of ten formations that are here described in a lexicon format. For each formation, the type and reference sections in outcrop or/and subsurface are reviewed (as defined by the original authors or herein), and further documented by including subsurface data (electrical logs and biostratigraphic studies). The Ordovician-Permian formations (and their members) are here placed chronostratigraphically according to the “Geological Time Scale GTS 2004” (and standard global Ordovician stages) and the Arabian Plate sequence stratigraphic framework. The ten formations are: (1) the Early?, Middle and Late Ordovician Khabour Formation (with from base-up seven informal members K7 to K1); (2) the Silurian Akkas Formation (with the proposed lower Hoseiba and upper Qaim members); (3 and 4) the Late Devonian Pirispiki Red Beds Formation and enclosed Chalki Volcanics; (5) the Late Devonian (Famennian) and early Carboniferous (early Tournaisian) Kaista Formation; (6) the Carboniferous (Tournaisian) Ora Formation; (7) the Carboniferous (Tournaisian-Visean) Harur Limestone Formation; (8) the Visean-Serpukhovian Raha Formation (proposed here); (9) the late Carboniferous-early Middle Permian Ga’ara Formation; and (10) the late Middle and Late Permian Chia Zairi Formation (in outcrop consisting from base-up of the informal Dariri, Satina Anhydrite and Zinnar members). The Late Devonian-early Carboniferous succession, comprising the Pirispiki, Chalki, Kaista, Ora, Harur and Raha formations, is here proposed to comprise the Khleisia Group. The Paleozoic succession of Iraq is hydrocarbon-prospective in the western part of the country, and particularly in the Western Desert near Jordan, Saudi Arabia and Syria. The source-rock component of the petroleum system consists of several potential organic-rich shales including the regionally widespread Silurian Akkas “hot shale”. In the Akkas-1 well, two hot shale units have a combined thickness of 61 m (210 ft) and total organic carbon (TOC) values that reach 16.6%. Several reservoirs and seals present exploration targets in the Western Desert of Iraq. In the Akkas field, light (specific gravity of 42° API), sweet oil and gas (no H2S) were discovered in 1993 in the Akkas and Khabour formations, respectively. The Akkas reservoir occurs in the upper Qaim Member of the Silurian Akkas Formation and consists of sandstones that have a porosity of 6.5% and permeability of 0.2 mD. The Khabour reservoir occurs in the Upper Ordovician K1–K4 members and consists of sandstones with a fracture porosity of up to 7.6% and permeability of 0.13 mD. In North Iraq the carbonates of the Permian Chia Zairi and Triassic Mirga Mir formations correlate to gas reservoirs in the Khuff Formation of Arabia and the Dalan and Kangan formations of Iran, and may therefore be prospective. Southern Iraq, along the Kuwait and Saudi Arabian border, may also be prospective; however, no wells have been drilled into the deep Paleozoic succession in this vast region.
7

Davoudzadeh, M., et K. Weber-Diefenbach. « Paleogeography, Stratigraphy, and Tectonics of the Tertiary of Iran ». Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 205, no 1 (7 juillet 1997) : 33–67. http://dx.doi.org/10.1127/njgpa/205/1997/33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sakhavati, Behnam, Mostaa Yousefirad, Mahmoud Reza Majidifard, Ali Solgi et Zahra Maleki. « Age of the Gachsaran Formation and equivalent formations in the Middle East based on Foraminifera ». Micropaleontology 66, no 5 (1 septembre 2020) : 441–65. http://dx.doi.org/10.47894/mpal.66.5.06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The Gachsaran Formation from the Fars Group has a vast extent in Saudi Arabia, United Arab Emirates and Qatar (Dam Formation). It extends from the Zagros Folded Belt Zone in the south of Iran to the north of Iraq, and even to northeast Syria (Fatha Formation). In order to eliminate the ambiguities of the proposed age and cover the regional information misplacements in cases where biostratigraphy studies can be effective, surface outcrops of these deposits were investigated in three stratigraphic sections near the border of Iran and Iraq, in the area behind the mountains of the Lurestan region (Posht-e-Kuh arc). According to similar results obtained in two other sections, the age of the Gachsaran Formation in the studied region is considered to be Early Miocene (Late Burdigalian). Comparison of the results of this study with biostratigraphic studies from other parts of the Middle East, which includes 16 study areas, shows that the Gachsaran Formation in Iran and its equivalent formations (Fatha and Dam) in neighboring countries have an age range of early Miocene (Aquitanian–Burdigalian) and even Burdigalian. This age has been determined by comparing the biological contents of the Gachsaran Formation with valid official biozones, as well as the presence of the index fossil Borelis melo curdica, to cover the information gap in the area. Isotopic studies of these sections in the region show that the maximum age of these sediments is early Miocene (Burdigalian), and this confirms the results of biostratigraphic studies.
9

Daneshian, Jahanbakhsh, Zahra Saleh, Rudy Swennen et Hossein Mosaddegh. « Porosity development in central Alborz Upper Jurassic deposits (N-Iran) : sequence stratigraphy, diagenesis and mechanical stratigraphy ». Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 300, no 2 (28 mai 2021) : 117–43. http://dx.doi.org/10.1127/njgpa/2021/0975.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hairapetian, Vachik, Mansoureh Ghobadi Pour, Leonid E. Popov, Peep Männik et C. Giles Miller. « Silurian stratigraphy of Central Iran – an update ». Acta Geologica Polonica 67, no 2 (27 juin 2017) : 201–33. http://dx.doi.org/10.1515/agp-2017-0014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractThe Silurian biostratigraphy, lithostratigraphy, and facies of Central Iran including the Kashmar (Boghu Mountains), Tabas (Derenjal Mountains, Ozbak-Kuh), Anarak (Pol-e Khavand) and Kerman regions is reviewed and updated. The current state of knowledge of the Silurian in the Zagros Basin, Alborz, Kopet-Dagh and Talysh regions, as well as in a few areas scattered across the Sabzevar Zone, and the Sanandaj-Sirjan terranes is also reviewed. Silurian volcanism in various parts of Iran is briefly discussed. The end of the Ordovician coincided with a widespread regression across Iran synchronous with the Hirnantian glaciation, and only in the Zagros Basin is there a continuous Ordovician-Silurian transition represented by graptolitic black shales of the Sarchahan Formation. In the Central-East Iranian Platform marine sedimentation re-commenced in the early to mid Aeronian. By the Sheinwoodian, carbonate platform depositional environments were established along its north-eastern margin. In other parts of Iran (e.g., Kopet-Dagh and the Sabzevar Zone), siliciclastic sedimentation continued probably into the late Silurian. The Silurian conodont and brachiopod biostratigraphy of Central Iran is significantly updated facilitating a precise correlation with the Standard Global Chronostratigraphic Scale, as well as with key Silurian sections in other parts of Iran. The Silurian lithostratigraphy is considerably revised and two new lithostratigraphical units, namely the Boghu and Dahaneh-Kalut formations, are introduced.

Thèses sur le sujet "Stratigraphie – Iran":

1

Hemmati, Soheil. « Stratigraphy and bio-event studies of the Guadalupian - Lopingian boundary in the northern margin of Sanandaj-Sirjan Zone, Central Iran and North-West of Iran ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS011.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
La position de la limite Guadalupien - Lopingien (GLB) a longtemps été un sujet de controverse Parmi les nombreuses coupes étudiées, trois régions spécifiques : Julfa (coupe d'Ali-Bashi), Tabas (coupe de Bagh-e-Vang) et Abadeh (coupe de Baghuk) ont été choisies pour une étude ciblée. La coupe d'Ali-Bashi a fait l'objet d'un échantillonnage et d'une vaste collecte de plus de 240 échantillons de roche sur une épaisseur mesurée de 189 mètres et dans la coupe de Bagh-e-Vang, plus de 160 échantillons sur 200 mètres d'épaisseur dans la Formation de Jamal. L'échantillonnage de la section Baghouk a rencontré des obstacles spécifiques qui ont entravé notre progression, notamment : les conditions climatiques, la crise économique en Iran et la pandémie de covid-19. Une étude lithostratigraphique très détaillée de la Formation de Khachik sur la coupe d'Ali-Bashi a permis d'identifier 14 unités rocheuses distinctes au sein des trois membres principaux. Ceci permet un nouvel inventaire lithostratigraphique de ces séquences, qui peut être compré avec les recherches existantes sur la Formation de Khachik. De plus, dans la section Bagh-e-Vang, 10 unités de la Formation de Jamal appartenant aux trois membres ont également été identifiées. De plus, des méthodes d'extraction, au CH₂O₂, au CH₃COOH, l'acétolyse à chaud et les protocoles à l'HF, ont été testées pour l'extraction des microfossiles. Après d'importants efforts de préparation et un protocole soigneusement élaboré destiné à l'obtention de conodontes, l'application des techniques CH₂O₂ et CH₃COOH, les coupes d'Ali-Bashi et Bagh-e-Vang, n'ont pas livré de conodontes. Trois autres méthodes ont été testées pour l'extraction d'ostracodes sur des échantillons de la coupe d'Ali-Bashi. Les échantillons ont été préparés avec de l'acide formique à 10 % (CH₂O₂) et de l'acide acétique à 15 % (CH₃COOH). Le protocole CH₂O₂ a été productif avec des ostracodes bien conservés, avec dix taxons dans des calcaires dolomitisés durs, tandis que les autres processus (CH₃COOH à froid) n'ont rien donné. L'application du protocole d'acétolyse à chaud s'est avérée efficace pour extraire une quantité importante de carapaces d'ostracodes bien conservées, conduisant à l'identification d'un total de 56 espèces. La technique à l'HF dans le traitement de 12 échantillons de cherts des coupes d'Ali-Bashi et Bagh-e-Vang n'a pas permis d'isoler de radiolaires. L'analyse des microfaciès dans la coupe d'Ali-Bashi a permis d'identifier 15 microfaciès distincts subdivisés en 28 sous-microfaciès. L'assemblage de groupes de microfaciès sont de MKL1 à MKL2 (milieu lagunaire), de MKR2 à MKR3 (restreint) présente des caractéristiques d'un cadre restreint de rampe intérieure, MKO1 à MKO4 (marine ouvert) en zone de rampe interne. Les microfaciès MKM1 à MKM3 se sont déposés dans un environnement marin ouvert, dans les zones de la rampe médiane, tandis que MKT1 à MKT3 ont été identifiés dans les parties inférieures de la rampe extérieure, correspondant à la position du pied de pente de la plate-forme carbonatée. De plus, en se rapportant aux microfaciès standards défnis par Flugel (2010), l'étude propose 10 microfaciès de type RMF, ainsi que leurs 4 SMF correspondants. De plus, sur la base des zones de faciès standard (ZF) introduites par Wilson (1975), trois ZF présentant une tendance ascendante peu profonde, à savoir FZ8, FZ7 et FZ3, ont été délimitées avec succès
The position of the Guadalupian-Lopingian Boundary (GLB) has long been a subject of contention among researchers. Among the numerous sections investigated, three specific regions Julfa (Ali-Bashi section), Tabas (Bagh-e-Vang section), and Abadeh (Baghuk section) have been chosen for focused study in this project. The Ali-Bashi section where sampling and an extensive collection of over 240 rock samples from a measured thickness of 189 meters and in the Bagh-e-Vang section a meticulous effort resulted in the collection of more than 160 rock samples from an outcrop measuring 200 meters in thickness in the Jamal Formation. Sampling the Baghuk section, encountered specific obstacles that impeded our progress including: climatic conditions, economic crisis in Iran and covid-19 pandemic. High-detailed lithostratigraphical investigation of the Khachik Formation in the Ali-Bashi section, led to identified 14 distinct rock units within the three main members. This discovery has the potential to stimulate the creation of a new lithostratigraphic inventory for these sequences, which can be aligned with the existing background research on the Khachik Formation in this particular section. Furthermore, in the Bagh-e-Vang section, 10 rock units from Jamal Formation strata's belonging to the three members have also been identified. Moreover, Various extraction methods, including CH₂O₂, CH₃COOH, hot acetolysis, and HF protocols, were evaluated for the isolation of microfossils. After extensive preparation efforts and carefully crafted protocol intended for conodont element identification, applying both the CH₂O₂ and CH₃COOH techniques, in the Ali-Bashi and the Bagh-e-Vang sections were not achieved any conodonts. Three other methods were tested for ostracod extraction from Ali-Bashi section samples. The samples were prepared with cold 10% formic acid (CH₂O₂) and 15% acetic acid (CH₃COOH). The CH₂O₂ protocol was productive with well-preserved ostracods, allowed us to determine ten taxa were obtained exclusively through the diluted CH₂O₂ protocol from the hard dolomitized limestones, while the other cold CH₃COOH procedures were unsuccessful. The application of the hot acetolysis protocol proved successful in extracting a significant quantity of excellently preserved ostracods, leading to the identification of a total of 56 species. Despite our unwavering commitment to the recommended protocol applied the HF technique in the processing of 12 cherty samples obtained from the Ali-Bashi and Bagh-e-Vang sections yielded a disheartening outcome for the radiolarian microfossils. Microfacies analysis in the Ali-Bashi section led to identified 28 sub-microfacies which, derived with 15 distinct microfacies. The assemblage of microfacies groups are, ranging from MKL1 to MKL2 (lagoonal environment), MKR2 to MKR3 (restricted), MKO1 to MKO4 (open-marine) of the inner ramp zone. The MKO1 to MKO4, suggests a confined setting, occurring in the final part of the inner ramp under an open marine environment. Microfacies groups MKM1 to MKM3 are inferred to have been deposited in open marine environment, within the mid-ramp zones, whereas MKT1 to MKT3 were identified in the basal parts of the outer ramp, corresponding to the lower part of the slope within the carbonate shelf setting. Additionally, adhering to the standard microfacies designated by Flugel (2010), the study proposes 10 microfacies of the RMF type, along with their corresponding 4 SMFs for the studied strata. Besides, based on the standard facies zones (FZ) introduced by Wilson (1975), three FZs exhibiting a shallowing-upward trend, namely FZ8, FZ7, and FZ3, have been successfully delineated
2

Taati, Qorayem Farid. « Stratigraphie séquentielle de systèmes carbonates dans un contexte tectonique actif : le groupe de Bangestan (Albien - Turonien) dans le Zagros (Iran) ». Bordeaux 3, 2005. http://www.theses.fr/2005BOR30001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Cette étude porte sur les systèmes carbonatés Albien à Turonien (Groupe Bangestan) de la marge orientale de la plaque arabe, qui affleure dans les montagnes du Zagros au sud-ouest de l'Iran. Les objectifs de cette étude sont les suivants : (1) la reconnaissance de l'organisation stratigraphique haute-résolution de ces systèmes à partir de l'étude d'un affleurement de qualité exceptionnelle dans le haut Zagros, (2) la corrélation stratigraphique des séquences définies à l'affleurement le long de deux grands transects régionaux dans le sud-ouest de l'Iran, et (3) la comparaison du modèle stratigraphique iranien avec les systèmes crétacés équivalents de la plaque arabe (Oman, Emirats, Iraq). Cette étude est basée sur l'analyse de 11 coupes d'affleurement et de quatorze logs de forages pétroliers (± paléologs α) : analyses paléontologiques semi-quantitatives, analyses sédimentologiques de faciès et microfaciès, analyses géochimiques des isotopes du carbone et de l'oxygène. L'intégration de l'ensemble de ces données a été utilisée pour établir un modèle de stratigraphie séquentielle haute-résolution. Les résultats de cette étude montrent l'existence de deux types de système carbonaté durant la période considérée : un système de type rampe riche en Orbitolines durant l'Albien inférieur (équivalent de la Formation Kazhdumi) et un système de type plate-forme barrée à rudistes et bassin intrashelf adjacent de l'Albien supérieur au Turonien (Formation Sarvak). La Formation Sarvak comprend quatre séquences de dépôt de troisième ordre. Sur des affleurements d'échelle subsismique, ces séquences montrent une organisation complexe en particulier pour ce qui concerne la géométrie des prismes de bas niveau marin et l'architecture des dépôts à la transition plate-forme bassin intrashelf. Ces séquences ont été reconnues régionalement et corrélées sur plusieurs centaines de kilomètres, renforçant ainsi la validité du modèle stratigraphique établi. Ces séquences sont également identifiées à l'échelle de plate-forme arabe grâce à des corrélation fiables avec les séries d'Oman et des Emirats, et, avec une précision moindre, avec celles d'Iraq. La zone d'affleurement étudiée fournit un analogue de première classe pour ce qui concerne le modèle de dépôt, le découpage séquentiel au 3ʿ ordre et l'organisation stratigraphique de la Formation Sarvak. Il pourra ainsi servir de modèle de référence pour le Zagros mais aussi pour une large partie du Moyen-Orient.
3

Shahidi, Alireza. « Evolution tectonique du nord de l'Iran (Alborz et Kopet-Dagh) depuis le Mésozoïque ». Paris 6, 2008. http://www.theses.fr/2008PA066249.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
A partir d’études structurales, de paléocontraintes, subsidence et biostratigraphie, nous proposons un modèle d'évolution tectonique du nord de l'Iran depuis le Trias et l’orogenèse éo-cimmérienne (collision blocs cimmériens-Laurasie). Une extension NNE-SSW (failles normales synsédimentaires dans le Shemshak Trias sup. -Jurassique inf. ) est liée à la phase de rifting précédant l'ouverture du bassin Sud-Caspien (BSC), contemporaine des formations carbonatées Dalichai et Lar (Bajocien sup. -Néocomien). La formation de Tiz-Kuh (fin Barrémien-Aptien) est discordante (tardi-cimmérien) sur les séries mésozoïques antérieures. Le Crétacé sup. Débute par un épisode magmatique alcalin qui se poursuit jusqu’au Santonien. Le passage Crétacé-Paléogène est marqué par une discordance régionale liée à une inversion de la marge sud des bassins. Pendant l'Eocène inférieur à moyen, les failles normales synsédimentaires E-W à WNW-ESE sont fréquentes dans le Karaj (bassin d’arrière-arc très subsident).
4

Asghari, Afshin. « Environnement sédimentaire, stratigraphie séquentielle et paléogéographie du Paléozoique de succession pré-Khuff dans le sud de l'Iran (Zagros et le Golfe Persique) ». Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS058/document.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Au cours du Précambrien et du Paléozoïque, la zone Zagros faisait partie de la plate-forme Arabe. La succession Paléozoïque du Zagros s’étend du Cambrien au Permien. La zone d'étude se situe entre le Lurestan et le Fars au sud et le Golfe Persique. Au Paléozoïque, dans le secteur du Zagros, la série stratigraphique comprend quatre séquences de second ordre (ou cycles tectonostratigraphiques) séparées par d’importantes discordances. L’eustatisme est le principal facteur déterminant les changements d’espace d’accommodation, même si localement dans l'Ouest du Haut Zagros, le rôle de la tectonique régionale et des mouvements diapririques est important. Le premier cycle (Ordovicien) est composé des Fomrations Seyahou (Floien-Katien) et Dargaz (Hirnantien). Il enregistre une évolution depuis des milieux profonds à peu profonds de plate-forme siliciclastique. La Formation Seyahou est découpée en sept séquences de troisième ordre et la Formation Dargaz correspondant à des dépôts glaciogènes comprends deux séquences de troisième ordre. Le deuxième cycle (Silurien inférieur) correspond à la Formation Sarchahan. Il est caractérisé des environnements marins peu profonds à profonds comprenant des marnes riches en matière organique. Il est composé par deux séquences de dépôt de troisième ordre. Localement à Kuh e Gahkum, la base de cette Formation enregistre des dépôts peu profonds de transition continental-marin dont la présence est attribuée à la mise en place d’un diapir dans le secteur. Le troisième cycle (Dévonien) correspond à la Formation Zakeen. Les dépôts évoluent depuis des environnements continentaux à marins. La fin du Dévonien est marqué par des environnements marins carbonatés dans le sud de la région du Fars et dans le Golfe Persique. Il est divisé en trois séquence de troisième ordre. L’absence de la Formation Zakeen à Kuh e Surmeh et Kuh e Siah, et sa présence dans les régions voisines (Naura, West Agar, etc ...), suggèrent une activité diapirique, expliquant l’érosion locale des séries sédimentaires. Le dernier cycle de la succession pré-khuff dans la zone d'étude correspond à la Formation Faraghan du Permien inférieur. Il surmonte une discontinuité attribué au jeu de l'orogenèse Hercynienne et est déposé dans toute la région du Zagros et dans le Golfe Persique. La Formation Faraghan correspond à des environnements de plaine côtière à marins et est divisé en trois séquences de troisième ordre.La succession du Paléozoïque est marquée par plusieurs discordances majeures. Elles résultent de: (i) variations majeures du niveau marin en lien avec des variations glacioeustatiques comme pour le cas de la glaciation Hirnantien à la fin de l’Ordovicien et celle du Carbonifère; (ii) Un soulèvement du Moyen-Orient à la fin du Silurien associé aux mouvements épeirogéniques et à une baisse importante du niveau de la mer; et (iii) l'orogenèse Hercynienne allant de la fin du Dévonien à Carbonifère. Localement, les discordances peuvent aussi s’expliquer par le jeu de remontée diapirique induisant une érosion locale, comme c’est le cas dans les secteurs de Kuh e Surmeh et de Kuh e Gakhum pour des periodes de temps différentes
During the Precambrian and trough the Palaeozoic, the Zagros area was part of the Arabian platform (Beydon, 1993). The Palaeozoic succession of the Zagros extends from Cambrian to well-developed Permian deposits. The study area ranges from the Lurestan to Southern Fars onshore and to the Persian Gulf offshore wells. From Ordovician to Early Permian Palaeozoic succession of the Zagros area comprises four second-order tectonostratigraphic depositional cycles separated by major unconformities. Eustatic sea-level variation is the main controlling factor for accommodation space changes, whereas in West High Zagros and Kuh e Gahkum, the role of regional and salt tectonic activities may be also important. The first cycle (Ordovician) is composed of the Seyahou (Floian-Katian) and Dargaz (Hirnantian) Formations. They are characterized by deep- to shallow-water (offshore to shoreface) siliciclastic deposits. The Seyahou Formation contains seven 3rd-order depositional sequences. The glaciogenic Dargaz Formation consists of one 3rd- order sequence. The second cycle (Early Silurian) corresponds to the Sarchahan Formation is composed of two 3rd-order depositional sequences. They are characterized by deep-marine offshore to upper offshore environments. Locally in Kuh e Gahkum the base of the Formation presented continental fan delta deposits due to the salt tectonic activity.The third cycle (Devonian) corresponds to the Zakeen Formation and divided in three 3rd-order depositional sequences. It started with the deposition of continental to near-shore marine clastic deposits. In Late Devonian, it evolved to carbonate marine deposits in the south of Fars area and the Persian Gulf. The lack of Zakeen Formation in Kuh e Surmeh and Kuh e Siah, and is presence in neighboring areas (Naura, Aghar, etc…), suggests structural salt plug activities (Jahani, 2008). This megasequence is capped by a major unconformity related to the Hercynian orogeny.The last deepening-upward cycle of the Pre-khuff succession in the study area is the Early Permian Faraghan Formation. It capped the Hercynian orogeny and deposited throughout the Zagros area from Lurestan (west) to Bandar Abbas (East) areas as well as in Persian Gulf. The Faraghan Formation divided into three 3rd-order depositional sequences and deposited in coastal plain to shallow-marin near-shore environment. Basinward, in the deeper part (e.g. Kuh e Faraghan), they are replaced by marine upper offshore deposits. The Palaeozoic succession is marked by several major unconformities associated with hiatus. They resulted from: (i) major sea level drops at the end of the Ordovician related to the Hirnantian glaciation (Ghavidel Syooki et al., 2011) and of during the Carboniferous related to the southern Hemisphere glaciation (Golonka, 2000); (ii) An uplift of the Middle East area at the end of the Silurian associated with epeirogenic movements (Ala et al., 1980; Berberian and King, 1981; Al-Sharhan and Nairn, 1997) and a major sea level drop at the end of Silurian (Al-Husseini, 1991,1992; Sharland et al., 2001; Konert et al., 2001; Haq and Al-Qahtani, 2005); and (iii) impact of the Hercynian orogeny spanning from the Late Devonian up to the Carboniferous (Al-Hosseini, 1992; Sharland et al., 2001; Konert et al., 2001, Faqira et al., 2009)
5

Bessenay-Prolonge, Julie. « Au carrefour du plateau iranien et des steppes d'Asie Centrale : Tureng Tépé dans la plaine de Gorgan, des sociétés proto-urbaines aux forteresses de l'âge du Fer : étude strarigraphiques et architecturales menées d'après les archives inédites de la Mission Française à Tureng Tépé ». Thesis, Paris 1, 2018. http://www.theses.fr/2018PA01H004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Située dans le nord-est de l'Iran, au carrefour du plateau iranien et des steppes d'Asie Centrale, la plaine de Gorgân constitue, de par ses paysages et son climat, une région particulièrement favorable à l'installation humaine. Le site de Tureng Tépé, fouillé dans les années 1960-1970 par une équipe d'archéologues français, a livré une séquence d'occupation de plusieurs millénaires, depuis le chalcolithique jusqu'à l'époque moderne. L'étude stratigraphique et architecturale menée à partir des documents inédits issus des archives de fouille, a permis de reconstruire et de caractériser les occupations les plus anciennes du site, du Chalcolithique à l'Âge du Fer. Les niveaux archéologiques dégagés dans les secteurs du Petit Tépé et du Tépé Sud montrent ainsi une occupation continue depuis la fin du 4ème millénaire jusqu'au début du 2ème millénaire avant notre ère. L'Âge du Bronze Moyen est marqué par la construction d'une haute terrasse monumentales en briques dont une analyse architecturale approfondie a été réalisée. Par ailleurs, l'étude de plusieurs catégories d'artefacts montrent clairement l'existence de contacts et d'échanges longues distances entre d'une part les plaines de Gorgân et de Dâmghân, et d'autre part l'Asie Centrale méridionale, le Khorasan, et dans une moindre mesure les régions du sud-est du plateau iranien et du Baloutchistan. Après plusieurs siècles d'abandon, le site de Tureng Tépé est réoccupé à la fin de l'Âge du Fer II. Ces occupations, qui se distinguent clairement de celles de l'Âge du Bronze, sont représentés par une succession de fortifications reconstruites à plusieurs reprises
Located in the northeast of Iran, at the crossroads of the Iranian plateau and the steppes of Central Asia, the Gorgân plain is, by the nature of its landscapes and climate, a particularly suitable region for human settlements. The site of Tureng Tépé, excavated in the years 1960-1970 by a team of French archaeologists, revealed an occupational sequence of several millennia since Chalcolithic until the modem time. The stratigraphic and architectural study conducted from unpublished documents from the excavation archives, permit us to reconstruct and characterize the oldest occupations of the site, from Chalcolithic to the Iron Age. The archaeological layers discovered in the areas of the Petit Tépé and the Tépé Sud demonstrate continuous occupation from the end of the 4th millennium to the beginning of the 2nd millennium BC. The Middle Bronze Age is marked by the construction of a large monumental brick terrace of which an in-depth architectural analysis has been carried out. In addition, the study of several categories of artifacts clearly shows the existence of long-distance contacts and exchanges between on the one band the plains of Gorgan and Damghan, and on the other hand South Central Asia and Khorasan and to a lesser extent the southeastem regions of the Iranian plateau and Baluchistan. After several centuries of abandonment, Tureng Tépé is reoccupied at the end of the Iron Age II. These occupations, which are clearly distinguishable from those of the Bronze Age, are represented by a succession of fortifications rebuilt several times
6

Dastanpour, Mohammad. « The Devonian stratigraphy of Kerman, southeast central Iran ». Thesis, University of Bristol, 1990. http://hdl.handle.net/1983/5af05e94-ca3e-4e6e-ab46-e6dad2dde86d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pufahl, Peir Kenneth. « Stratigraphic architecture of a paleoproterozoic iron formation depositional system, the Gunflint, Mesabi and Cuyuna iron ranges ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/MQ33432.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gapara, Cornwell Sine. « A review of the deposition of iron-formation and genesis of the related iron ore deposits as a guide to exploration for Precambrian iron ore deposits in southern Africa ». Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005610.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Iron-formations are ferruginous sedimentary rocks which have their source from fumarolic activity associated with submarine volcanism, with deposition of iron as oxides, hydroxides, and hydrous oxide-silicate minerals in shallow and/or deep marine sedimentary systems. The Precambrian ironformations of southern Africa have a wide age range, but are more prominently developed before 1.SGa. These iron formations occur in greenstone belts of the Kaapvaal and Zimbabwean cratons, in the Limpopo mobile belt, in cratonic basins and in the Damara mobile belt. The Archaean-Proterozoic sedimentary basins and greenstone belts host iron ore deposits in iron-formation. Iron formations have a lengthy geological history. Most were subjected to intense, and on occasions repeated, tectonic and metamorphic episodes which also included metasomatic processes at times to produce supergene/hypogene high grade iron ores. Iron-formations may be enriched by diagenetic, and metamorphic processes to produce concentrating-grade ironformations. Uplift, weathering and denudation, have influenced the mineral association and composition of the ores, within which magnetite, haematite and goethite constitute the major ore minerals. The iron resources of the southern Africa region include the Sishen deposits, hosting to about 1200 Mt of high grade direct shipping ore, at >63% Fe. Deposits of Zimbabwe have more than 33 000 Mt of beneficiable iron-formation. The evaluation of an iron ore prospect involves many factors which must be individually assessed in order to arrive at an estimate of the probable profitability of the deposit. Many of these are geological and are inherent in the deposit itself. Other factors are inherent aspects of the environment in which the ore is formed. Although the geological character of the ore does not change, technological advances in the processing techniques may have a great effect on the cost of putting the ore into marketable form. Geochemical, geophysical and remote sensing methods would be used for regional exploration. Chip sampling and drilling are useful for detailed exploration. Purely geological exploration techniques are applicable on a prospect scale in the exploration of iron ore deposits. Regional exploration targeting should choose late Archaean greenstone belts containing oxide facies iron-formation or Early Proterozoic basins located at craton margins as they are both known to host high-grade haematite orebodies formed by supergene/hypogene enrichment. Most types of iron ore deposits in southern Africa are described and classified. An attempt is made to emphasize the major controls on mineralisation, in the hope that these may be applicable to exploration both in the southern African region and within analogous settings around the world.
9

Muller, Katherine Charlotte. « Formation of iron-rimmed sandstone nodules on earth ; terrestrial analogue for the formation of Martian blueberries ? » Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Muller_2009_09007dcc8071b44c.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Thesis (M.S.)--Missouri University of Science and Technology, 2009.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 11, 2009) Includes bibliographical references (p. 85-87).
10

Wightman, Gregory John. « Studies in the stratigraphy and chronology of iron age II-III in Palestine ». Thesis, The University of Sydney, 1985. https://hdl.handle.net/2123/26034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Research for this dissertation was undertaken in the Department of Archaeology at Sydney University during the years 1983-85, under the supervision of Professor J.B. Hennessy, whom I would like to thank for his encouragement and open-minded attitude.

Livres sur le sujet "Stratigraphie – Iran":

1

Richoz, Sylvain. Stratigraphie et variations isotopiques du carbone dans le Permien superieur et le Trias inferieur de quelques localities de la Neotethys (Turquie, Oman et Iran). Lausanne, Suisse : Institut de Géologie et Paléontologie, Université de Lausanne, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

W, Ruttner Anton, dir. The Triassic of Aghdarband (AqDarband), NE-Iran, and its pre-Triassic frame. Wien : Geologische Bundesanstalt, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

W, Ruttner Anton, dir. The Triassic of Aghdarband (AqDarband), NE-Iran, and its pre-Triassic frame. Wien : Geologische Bundesanstalt, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Summers, G. D. Yanik Tepe, Northwestern Iran : The early Trans-Caucasian period : stratigraphy and architecture. Leuven : Peeters, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

James, Harold Lloyd. Precambrian geology and bedded iron deposits of the southwestern Ruby Range, Montana. Washington : U.S. G.P.O., 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Petrovich, Petrov Valentin, Gori͡a︡inov Pavel Mikhaĭlovich, Balabonin N. L et Geologicheskiĭ institut (Akademii͡a︡ nauk SSSR. Kolʹskiĭ filial im. S.M. Kirova), dir. Geologii͡a︡ i genezis zhelezorudnykh mestorozhdeniĭ rannego dokembrii͡a︡. Apatity : Akademii͡a︡ nauk SSSR, Kolʹskiĭ filial im. S.M. Kirova, Geolog. in-t, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

P, Melʹnik I͡U. Genezis dokembriĭskikh poloschatykh zhelezistykh format͡siĭ. Kiev : Nauk. dumka, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shchegolev, I. N. Zhelezorudnye mestorozhdenii͡a︡ dokembrii͡a︡ i metody ikh izuchenii͡a︡. Moskva : "Nedra", 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kehl, Martin. Quaternary loesses, loess-like sediments, soils and climate change in Iran. Stuttgart : Gebrüder Borntraeger, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gorʹkovet͡s, V. I͡A. Putevoditelʹ geologicheskikh ėkskursiĭ po arkhei͡u v raĭone Kostomukshskogo zhelezorudnogo mestorozhdenii͡a. Petrozavodsk : Karelʹskiĭ nauchnyĭ t͡sentr RAN, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Stratigraphie – Iran":

1

Al-Helal, Anwar, Yaqoub AlRefai, Abdullah AlKandari et Mohammad Abdullah. « Subsurface Stratigraphy of Kuwait ». Dans The Geology of Kuwait, 27–50. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16727-0_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractThis chapter reviews the subsurface stratigraphy of Kuwait targeting geosciences educators. The lithostratigraphy and chronostratigraphy of the reviewed formations (association of rocks whose components are paragenetically related to each other, both vertically and laterally) followed the formal stratigraphic nomenclature in Kuwait. The exposed stratigraphic formations of the Miocene–Pleistocene epochs represented by the Dibdibba, Lower Fars, and Ghar clastic sediments (Kuwait Group) were reviewed in the previous chapter as part of near-surface geology. In this chapter, the description of these formations is based mainly on their subsurface presence. The description of the subsurface stratigraphic formations in Kuwait followed published academic papers and technical reports related to Kuwait’s geology or analog (GCC countries, Iraq and Iran) either from the oil and gas industry or from different research institutions in Kuwait and abroad. It is also true that studies related to groundwater aquifer systems also contribute to our understanding of the subsurface stratigraphy of Kuwait for the shallower formations. The majority of the published data were covered the onshore section of Kuwait. The subsurface stratigraphic nomenclature description is based on thickness, depositional environment, sequence stratigraphy, the nature of the sequence boundaries, biostratigraphy, and age. The sedimentary strata reflect the depositional environment in which the rocks were formed. Understanding the characteristics of the sedimentary rocks will help understand many geologic events in the past, such as sea-level fluctuation, global climatic changes, tectonic processes, geochemical cycles, and more, depending on the research question. The succession of changing lithological sequences is controlled by three main factors; sea-level change (eustatic sea level), sediment supply, and accommodation space controlled by regional and local tectonics influences. Several authors have developed theoretical methods, established conceptual models, and produced several paleofacies maps to interpret Kuwait’s stratigraphic sequence based on the data collected over time intervals from the Late Permian to Quaternary to reconstruct the depositional history of the Arabian Plate in general and of Kuwait to understand the characteristics of oil and gas reservoirs.
2

Balamurali, Mehala, et Katherine L. Silversides. « LSTM-Based Deep Learning Method for Automated Detection of Geophysical Signatures in Mining ». Dans Springer Proceedings in Earth and Environmental Sciences, 163–71. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19845-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractThe mining of stratified ore deposits requires detailed knowledge of the location of orebody boundaries. In the Banded Iron Formation (BIF) hosted iron ore deposits located in the Pilbara region of Western Australia the natural gamma logs are useful tool to identify stratigraphic boundaries. However, manually interpreting these features is subjective and time consuming due to the large volume of data. In this study, we propose a novel approach to automatically detect natural gamma signatures. We implemented a LSTM based algorithm for automated detection of signatures. We achieved a relatively high accuracy using gamma sequences with and without added noise. Further, no feature extraction or selection is performed in this work. Hence, LSTM can be used to detect different signatures in natural gamma logs even with noise. So, this system can be introduced in mining as an aid for geoscientists.
3

Hagemann, Steffen, Ana-Sophie Hensler, Rosaline Cristina Figueiredo e Silva et Harilaos Tsikos. « Light Stable Isotope (O, H, C) Signatures of BIF-Hosted Iron Ore Systems : Implications for Genetic Models and Exploration Targeting ». Dans Isotopes in Economic Geology, Metallogenesis and Exploration, 373–97. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractStable isotope data from hypogene (i.e., below the line of weathering) iron oxides and gangue minerals from BIF-hosted iron ore deposits in Australia, South Africa, and Brazil have significantly assisted in constraining different hydrothermal fluid sources and fluid flow models during the upgrade of BIF to iron ore. The δ18O values on iron oxides from BIF and different paragenetic stages of enrichment display a consistent decrease from unenriched BIF (4–9‰) to as low as −10‰ for high-grade iron ore. This large shift in oxygen isotope values is interpreted as evidence for enormous incursion of ‘ancient’ meteoric water into fault and fracture zones at the time of iron enrichment during the Archean and Paleoproterozoic time. The δ18Ofluid values of paragenetically early iron oxides of > 4‰ suggest the involvement of magmatic fluids in greenstone belt-hosted Carajás-type iron ore deposits, and basinal brines in basin-hosted Hamersley-type deposits. In contrast, the paragenetically late stage iron oxides in the metamorphosed, basin hosted iron ore deposits of the Quadrilátero Ferrífero display δ18Ofluid values > 6‰. This reflects the renewed deep crustal, hypogene (metamorphic or magmatic) fluid influx. Carbon and oxygen isotope data on carbonates in BIF and hydrothermally altered iron ore indicate that carbon in the latter is not derived from BIF units, but represents either magmatic carbon in the case of the Carajás-type deposits or carbon within the underlying basin stratigraphy as in the case of the Hamersley-type iron deposits. The systematic decrease of δ18O values in iron oxides from the early to late paragenetic stages and from the distal to proximal alteration zone, including the ore zone, may be used as a geochemical vector. In this case, oxygen isotope analyses on iron oxides provide a potential exploration tool, particularly for targeting the extension of iron ore bodies or entirely concealed high-grade iron ore deposits, in which hematite/magnetite are frequently the only mineral that can be readily analysed.
4

Habibnia, B., et D. Javanbakht. « Stratigraphic Zonation of Bangestan Reservoir, Binak Field Persian Gulf Coast, SW Iran ». Dans Geology of Fossil Fuels - Oil and Gas, 225–37. London : CRC Press, 2021. http://dx.doi.org/10.1201/9780429087837-23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yu, Yi-chang, Zhi-wei Li, Bo-heng Shen, Rui Guo, Jing-qi Yang, Yi-fan Wang, Feng-feng Li et Ya-xin Zhao. « Tectonic Setting and Stratigraphic-Sedimentary Evolution Characteristics of Cretaceous Mishrif Formation in Southeast Iraq ». Dans Springer Series in Geomechanics and Geoengineering, 6124–40. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1964-2_526.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Karim, Kamal Haji. « New Time-Expanded Chronostratigraphic Column of Northern Iraq During Cretaceous and Tertiary ». Dans Recent Research on Sedimentology, Stratigraphy, Paleontology, Tectonics, Geochemistry, Volcanology and Petroleum Geology, 35–39. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43222-4_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wilmsen, Markus, Marisa Storm, Franz Theodor Fürsich et Mahmoud Reza Majidifard. « Integrated Stratigraphy and Facies Analysis of the Upper Albian–Turonian (Cretaceous) Debarsu Formation (Yazd Block, Central Iran) ». Dans Springer Geology, 623–27. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04364-7_120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Al-Qayim, Basim. « Stratigraphic Differentiation of the Zagros Foreland Basin Sequence, Kurdistan Region, (Northern Iraq) : Impacts on Oil Accumulations ». Dans Paleobiodiversity and Tectono-Sedimentary Records in the Mediterranean Tethys and Related Eastern Areas, 267–69. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01452-0_64.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ameen, Fadhil, et Fawzi Mardan. « Sequence Stratigraphic Analysis of the Middle Paleocene-Middle Eocene in the Sulaimani District (Kurdistan Region), North Iraq ». Dans Paleobiodiversity and Tectono-Sedimentary Records in the Mediterranean Tethys and Related Eastern Areas, 207–9. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01452-0_50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ameen, Fadhil Ahmed. « Sequence Stratigraphy of the Oligocene and Miocene Successions from Selected Wells in Garmian District, Kurdistan Region/Iraq ». Dans Advances in Science, Technology & ; Innovation, 209–12. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72547-1_46.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Stratigraphie – Iran":

1

Gravestock, Christopher, Alex Bromhead, Mike Simmons, Frans Van Buchem et Roger Davies. « Stratigraphic Trap Potential in the Middle East – Examples from the Mesozoic ». Dans Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207229-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Abstract The Mesozoic stratigraphy of the Middle East is endowed with multiple world-class, economically significant petroleum systems. Since the first discovery of a major oilfield in an anticline structure in 1908 (Masjed-e-Suleyman, Iran), exploration and production in the Middle East has been largely focussed on relatively low-risk, large structural traps. However, across the Arabian Plate, unexplored structural traps at similar scales are becoming scarce. Therefore, in this mature petroleum province, attention must now focus on identifying the presence of subtle stratigraphic traps, especially within the hydrocarbon-rich Mesozoic stratigraphy. In order to locate and evaluate subtle stratigraphic traps, we have applied sequence stratigraphic principles across the Mesozoic strata of the Arabian Plate. This approach provides a regional, robust age-based framework which reduces lithostratigraphic uncertainty across international boundaries and offers predictive capabilities in the identification and extent of stratigraphic plays. Herein, we focus on three intervals of Mesozoic stratigraphy, namely Triassic, Middle-Late Jurassic and middle Cretaceous strata, in which regional sequence stratigraphic based correlations have identified stratigraphic trap potential. Each of these stratigraphic intervals are associated with the following stratigraphic traps:Triassic: Sub-crop traps associated with a base Jurassic regional unconformity and intra-Triassic unconformities. Onlap geometries associated with differential topography on the Arabian Plate.Middle-Late Jurassic: Pure stratigraphic trap geometries associated with basin margin progradation and pinch-out plays either side of the Rimthan Arch related to late Oxfordian/early Kimmeridgian sea-level fall.Middle Cretaceous: Sub-crop potential beneath the regional mid-Turonian unconformity, basin margin progradation and stratigraphic pinch-out geometries associated with onlap onto basin margins. This regional sequence stratigraphic approach highlights the remaining exploration and production opportunities within these hydrocarbon-rich stratigraphic intervals.
2

Mohajjel, M., et S. A. Ali. « Tectono-stratigraphy and structure of the northwestern Zagros collision zone across the Iraq-Iran border ». Dans First EAGE Workshop on Iraq - Hydrocarbon Exploration and Field Development. Netherlands : EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143580.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Al-Qayim, B., S. Hussein, F. Qader, S. Al-Hakari, B. Shukor, Z. Sardar, D. Ahmed et H. Abdullah. « Stratigraphic Analysis of the Cretaceous Petroluem System, Sulaimani Area, Kurdistan, Iraq ». Dans Third EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Davies, Q., D. Green, N. Belyaeva, A. Chistyakov, T. Ershov et S. Yakubovskiy. « Sequence Stratigraphy of the Mishrif Formation West Qurna-2 Field ». Dans Third EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ameen, F. A. « Late Campanian – Maastrichtian Sequence Stratigraphy from Kurdistan Foreland Basin, N. Iraq ». Dans Second EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Van Simaeys, S., S. Fullmer, L. Yose et N. Stephens. « Preliminary Sequence-Stratigraphic Framework and Reservoir Characteristics of the Mauddud Reservoir, West Qurna 1 Field, Iraq ». Dans Third EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414352.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Van Simaeys, S., S. Fullmer et L. A. Yose. « Preliminary Sequence Stratigraphic Framework and Reservoir Characteristics of the Mauddud Reservoir, West Qurna I Field, Iraq ». Dans Second EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ryder, K., C. Lehmann, B. Vincent et P. Morris. « Enhanced Stratigraphic Resolution of the Mishrif Formation by Integrating Biostratigraphy and Chemostratigraphy, Rumaila Field, Southern Iraq ». Dans Second EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Al-Ameri, T. K., et A. H. Al-Egabi. « Palynomorph Stratigraphy, Palynofacies and Organic Geochemistry Assessments for Hydrocarbon Generation of Ratawi Formation ». Dans Second EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lehmann, C., J. Gardner, K. Totton, M. Fuchs, A. Holden et O. J. Olatoke. « Sequence Stratigraphy and Reservoir Heterogeneity Related to the Mishrif Formation, Rumaila Field, Southern Iraq ». Dans Third EAGE Workshop on Iraq. Netherlands : EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Stratigraphie – Iran":

1

Mueller, C., S. J. Piercey, M. G. Babechuk et D. Copeland. Stratigraphy and lithogeochemistry of the Goldenville horizon and associated rocks, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The Goldenville horizon in the Baie Verte Peninsula is an important stratigraphic horizon that hosts primary (Cambrian to Ordovician) exhalative magnetite and pyrite and was a chemical trap for younger (Silurian to Devonian) orogenic gold mineralization. The horizon is overlain by basaltic flows and volcaniclastic rocks, is intercalated with variably coloured argillites and cherts, and underlain by mafic volcaniclastic rocks; the entire stratigraphy is cut by younger fine-grained mafic dykes and coarser gabbro. Lithogeochemical signatures of the Goldenville horizon allow it to be divided into high-Fe iron formation (HIF; >50% Fe2O3), low-Fe iron formation (LIF; 15-50% Fe2O3), and argillite with iron minerals (AIF; <15% Fe2O3). These variably Fe-rich rocks have Fe-Ti-Mn-Al systematics consistent with element derivation from varying mineral contributions from hydrothermal venting and ambient detrital sedimentation. Post-Archean Australian Shale (PAAS)-normalized rare earth element (REE) signatures for the HIF samples have negative Ce anomalies and patterns similar to modern hydrothermal sediment deposited under oxygenated ocean conditions. The PAAS-normalized REE signatures of LIF samples have positive Ce anomalies, similar to hydrothermal sediment deposited under anoxic to sub-oxic conditions. The paradoxical Ce behaviour is potentially explained by the Mn geochemistry of the LIF samples. The LIF have elevated MnO contents (2.0-7.5 weight %), suggesting that Mn from hydrothermal fluids was oxidized in an oxygenated water column during hydrothermal venting, Mn-oxides then scavenged Ce from seawater, and these Mn-oxides were subsequently deposited in the hydrothermal sediment. The Mn-rich LIF samples with positive Ce anomalies are intercalated with HIF with negative Ce anomalies, both regionally and on a metre scale within drill holes. Thus, the LIF positive Ce anomaly signature may record extended and particle-specific scavenging rather than sub-oxic/redox-stratified marine conditions. Collectively, results suggest that the Cambro-Ordovician Taconic seaway along the Laurentian margin may have been completely or near-completely oxygenated at the time of Goldenville horizon deposition.
2

Mueller, C., S. J. Piercey, M. G. Babechuk et D. Copeland. Stratigraphy and lithogeochemistry of rocks from the Nugget Pond Deposit area, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328989.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Stratigraphic and lithogeochemical data were collected from selected drill core from the Nugget Pond gold deposit in the Betts Cove area, Newfoundland. The stratigraphy consists of a lower unit of basaltic rocks that are massive to pillowed (Mount Misery Formation). This is overlain by sedimentary rocks of the Scrape Point Formation that consist of lower unit of turbiditic siltstone and hematitic cherts/iron formations (the Nugget Pond member); the unit locally has a volcaniclastic rich-unit at its base and grades upwards into finer grained volcaniclastic/turbiditic rocks. This is capped by basaltic rocks of the Scrape Point Formation that contain pillowed and massive mafic flows that are distinctively plagioclase porphyritic to glomeroporphyritic. The mafic rocks of the Mount Misery Formation have island arc tholeiitic affinities, whereas Scrape Point Formation mafic rocks have normal mid-ocean ridge (N-MORB) to backarc basin basalt (BABB) affinities. One sample of the latter formation has a calc-alkalic affinity. All of these geochemical features are consistent with results and conclusions from previous workers in the area. Clastic sedimentary rocks and Fe-rich sedimentary rocks of the Scrape Point Formation have features consistent with derivation from local, juvenile sources (i.e., intra-basinal mafic rocks). The Scrape Point Formation sedimentary rocks with the highest Fe/Al ratios, inferred to have greatest amount of hydrothermally derived Fe, have positive Ce anomalies on Post-Archean Australian Shale (PAAS)-normalized trace element plots. These features are consistent with having formed via hydrothermal venting into an anoxic/ sub-oxic water column. Further work is needed to test whether these redox features are a localized feature (i.e., restricted basin) or a widespread feature of the late Cambrian-early Ordovician Iapetus Ocean, as well as to delineate the role that these Fe-rich sedimentary rocks have played in the localization of gold mineralization within the Nugget Pond deposit.
3

Jefferson, C. W., C. J. Beaumont-Smith et R. L. Lustwerk. Stratigraphic and Structural Settings of Iron-Formations and Gold in the Back River area, District of Mackenzie, N.W.T. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/126872.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jefferson, C. W., M. Dufresne, R. A. Olson et R. Rice. Stratigraphy and Sedimentology of Auriferous Archean Iron Formations in the Vicinity of George Lake, eastern Slave Province. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133353.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jefferson, C. W., R. L. Lustwerk et M. B. Lambert. Stratigraphy, Facies Changes and Structure in Auriferous, Iron - Rich, Archean Sedimentary Sequences Around the Back River Volcanic Complex, northeastern Slave Province, NWT. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie