Littérature scientifique sur le sujet « Structural solution »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Structural solution ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Structural solution"
Kharko, O. V. « Structural behaviour of continuous solid solution SmCo1-xFexO3 ». Functional Materials 21, no 2 (30 juin 2014) : 226–32. http://dx.doi.org/10.15407/fm21.02.226.
Texte intégralKnight, Kevin S., et C. Michael B. Clark Henderson. « Structural variations in the wesselsiteeffenbergerite (Sr1xBaxCuSi4O10) solid solution ». European Journal of Mineralogy 22, no 3 (23 juin 2010) : 411–23. http://dx.doi.org/10.1127/0935-1221/2010/0022-2025.
Texte intégralYEE, A., A. GUTMANAS et C. ARROWSMITH. « Solution NMR in structural genomics ». Current Opinion in Structural Biology 16, no 5 (octobre 2006) : 611–17. http://dx.doi.org/10.1016/j.sbi.2006.08.002.
Texte intégralChiriţă, S., M. Ciarletta et B. Straughan. « Structural stability in porous elasticity ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 462, no 2073 (30 mars 2006) : 2593–605. http://dx.doi.org/10.1098/rspa.2006.1695.
Texte intégralHollkamp, J. J., et S. M. Batill. « Structural Identification Using Order Overspecified Time-Series Models ». Journal of Dynamic Systems, Measurement, and Control 114, no 1 (1 mars 1992) : 27–33. http://dx.doi.org/10.1115/1.2896504.
Texte intégralMigliardo, F., V. Magazù et M. Migliardo. « Structural properties of C60 in solution ». Journal of Molecular Liquids 110, no 1-3 (mars 2004) : 3–6. http://dx.doi.org/10.1016/j.molliq.2003.08.010.
Texte intégralDražić, Jasmina, Igor Peško, Vladimir Mučenski, Aleksandar Dejić et Marina Romanovich. « Evaluating Contractors and Offered Structural Solution ». Procedia Engineering 165 (2016) : 898–905. http://dx.doi.org/10.1016/j.proeng.2016.11.790.
Texte intégralAl-Rasby, S. N. « Solution techniques in nonlinear structural analysis ». Computers & ; Structures 40, no 4 (janvier 1991) : 985–93. http://dx.doi.org/10.1016/0045-7949(91)90329-k.
Texte intégralTuma, Rabiya S. « Drug designers seek a structural solution ». Drug Discovery Today 8, no 22 (novembre 2003) : 1012. http://dx.doi.org/10.1016/s1359-6446(03)02906-4.
Texte intégralLiu, G. R., Y. G. Xu et Z. P. Wu. « Total solution for structural mechanics problems ». Computer Methods in Applied Mechanics and Engineering 191, no 8-10 (décembre 2001) : 989–1012. http://dx.doi.org/10.1016/s0045-7825(01)00314-0.
Texte intégralThèses sur le sujet "Structural solution"
Demers, Audrey Gertrude. « Structural studies of glycoproteins in solution ». Case Western Reserve University School of Graduate Studies / OhioLINK, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=case1054759177.
Texte intégralPatriksson, Alexandra. « From Solution into Vacuum - Structural Transitions in Proteins ». Doctoral thesis, Uppsala : University Library Universitetsbiblioteket, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8300.
Texte intégralSaint-Georges, Pascal. « Iterative Solution of Linear Systems for FEM Structural Analysis ». Doctoral thesis, Universite Libre de Bruxelles, 1996. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212345.
Texte intégralDicko, I. Cedric. « Structural changes in Nephila edulis silk proteins in solution ». Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400100.
Texte intégralStanic, Andjelka. « Solution methods for failure analysis of massive structural elements ». Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2383/document.
Texte intégralThe thesis studies: the methods for failure analysis of solids and structures, and the embedded strong discontinuity finite elements for modelling material failures in quasi brittle 2d solids. As for the failure analysis, the consistently linearized path-following method with quadratic constraint equation is first presented and studied in detail. The derived path-following method can be applied in the nonlinear finite element analysis of solids and structures in order to compute a highly nonlinear solution path. However, when analysing the nonlinear problems with the localized material failures (i.e. materialsoftening), standard path-following methods can fail. For this reason we derived new versions of the pathfollowing method, with other constraint functions, more suited for problems that take into account localized material failures. One version is based on adaptive one-degree-of-freedom constraint equation, which proved to be relatively successful in analysing problems with the material softening that are modelled by the embedded-discontinuity finite elements. The other versions are based on controlling incremental plastic dissipation or plastic work in an inelastic structure. The dissipation due to crack opening and propagation, computed by e.g. embedded discontinuity finite elements, is taken into account. The advantages and disadvantages of the presented path-following methods with different constraint equations are discussed and illustrated on a set of numerical examples. As for the modelling material failures in quasi brittle 2d solids (e.g. concrete), several embedded strong discontinuity finite element formulations are derived and studied. The considered formulations are based either on: (a) classical displacement-based isoparametric quadrilateral finite element or (b) on quadrilateral finite element enhanced with incompatible displacements. In order to describe a crack formation and opening, the element kinematics is enhanced by four basic separation modes and related kinematic parameters. The interpolation functions that describe enhanced kinematics have a jump in displacements along the crack. Two possibilities were studied for deriving the operators in the local equilibrium equations that are responsible for relating the bulk stresses with the tractions in the crack. For the crack embedment, the major-principle-stress criterion was used, which is suitable for the quasi brittle materials. The normal and tangential cohesion tractions in the crack are described by two uncoupled, nonassociative damage-softening constitutive relations. A new crack tracing algorithm is proposed for computation of crack propagation through the mesh. It allows for crack formation in several elements in a single solution increment. Results of a set of numerical examples are provided in order to assess the performance of derived embedded strong discontinuity quadrilateral finite element formulations, the crack tracing algorithm, and the solution methods
Doktorska disertacija obravnava: (i) metode za porušno analizo trdnih teles in konstrukcij, ter (ii) končne elemente z vgrajeno močno nezveznostjo za modeliranje materialne porušitve v kvazi krhkih 2d trdnih telesih. Za porušno analizo smo najprej preučili konsistentno linearizirano metodo sledenja ravnotežne poti skvadratno vezno enačbo (metoda krožnega loka). Metoda omogoča izračun analize nelinearnih modelov, ki imajo izrazito nelinearno ravnotežno pot. Kljub temu standardne metode sledenja poti lahko odpovedo,kadar analiziramo nelinearne probleme z lokalizirano materialno porušitvijo (mehčanje materiala). Zatosmo izpeljali nove različice metode sledenja poti z drugimi veznimi enačbami, ki so bolj primerne zaprobleme z lokalizirano porušitvijo materiala. Ena različica temelji na adaptivni vezni enačbi, pri katerivodimo izbrano prostostno stopnjo. Izkazalo se je, da je metoda relativno uspešna pri analizi problemov zmaterialnim mehčanjem, ki so modelirani s končnimi elementi z vgrajeno nezveznostjo. Druge različicetemeljijo na kontroli plastične disipacije ali plastičnega dela v neelastičnem trdnem telesu ali konstrukciji.Upoštevana je tudi disipacija zaradi širjenja razpok v elementih z vgrajeno nezveznostjo. Prednosti inslabosti predstavljenih metod sledenja ravnotežnih poti z različnimi veznimi enačbami so predstavljeni naštevilnih numeričnih primerih. Za modeliranje porušitve materiala v kvazi krhkih 2d trdnih telesih (npr. betonskih) smo izpeljali različne formulacije končnih elementov z vgrajeno močno nezveznostjo v pomikih. Obravnavane formulacije temeljijo bodisi (a) na klasičnem izoparametričnem štirikotnem končnem elementu bodisi (b) na štirikotnem končnem elementu, ki je izboljšan z nekompatibilnimi oblikami za pomike. Nastanek in širjenje razpoke opišemo tako, da kinematiko v elementu dopolnimo s štirimi osnovnimi oblikami širjenja razpoke in pripadajočimi kinematičnimi parametri. Interpolacijske funkcije, ki opisujejo izboljšano kinematiko, zajemajo skoke v pomikih vzdolž razpoke. Obravnavali smo dva načina izpeljave operatorjev, ki nastopajo v lokalni ravnotežni enačbi in povezujejo napetosti v končnem elementu z napetostmi na vgrajeni nezveznosti. Kriterij za vstavitev nezveznosti (razpoke) temelji na kriteriju največje glavne napetosti in je primeren za krhke materiale. Normalne in tangentne kohezijske napetosti v razpoki opišemo z dvema nepovezanima, poškodbenima konstitutivnima zakonoma za mehčanje. Predlagamo novi algoritem za sledenje razpoki za izračun širjenja razpoke v mreži končnih elementov. Algoritem omogoča formacijo razpok v več končnih elementih v enem obtežnem koraku. Izračunali smo številne numerične primere, da bi ocenili delovanje izpeljanih formulacij štirikotnih končnih elementov z vgrajeno nezveznostjo in algoritma za sledenje razpoki kot tudi delovanje metod sledenja ravnotežnih poti
Steinke, Nicola. « Structural investigations of peptide folding and unfolding in solution ». Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:753c28d5-cb84-4a40-9048-bbaf98e9057c.
Texte intégralDoan, Vinh Thi Thuy. « Integrated design solution of a residential structural insulated panel dwelling ». Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4236/.
Texte intégralGopalasingam, Piraveen. « Structural characterization of the protein tyrosine phosphatase Shp2 in solution ». Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5828/.
Texte intégralThareja, Rajiv R. « Efficient single-level solution of hierarchical problems in structural optimization ». Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/71195.
Texte intégralPh. D.
Borges, Rafael Junqueira. « Structural studies of PLA2-like toxins and development of the structure solution method sequence slider ». Botucatu, 2017. http://hdl.handle.net/11449/150292.
Texte intégralResumo: As fosfolipases A2 (PLA2s) são um dos maiores constituintes protéicos do veneno botrópico e um dos responsáveis pela necrose muscular, consequência esta não eficazmente neutralizada pela administração do soro antiofídico. Estas proteínas são tóxicas através do rompimento ou perturbação da membrana celular em um mecanismo catalítico dependente de cálcio e outro independente, sendo este último não totalmente elucidado. Usualmente, estas toxinas são obtidas diretamente do veneno das serpentes, sendo sua purificação um desafio pela co-existência de diferentes isoformas. O objetivo desta tese foi compreender o mecanismo miotóxico independente de cálcio através de estudos estruturais e propor nova metodologia que trate de dados cristalográficos de toxinas provenientes de amostras impuras, chamada SEQUENCE SLIDER. Para tanto, cristalografia e outras técnicas biofísicas, como espalhamento de raios X a baixo ângulo, serão utilizados para estudar três miotoxinas ofídicas em estado nativo e complexado com produtos naturais e inibidores. Nós propusemos medidas locais e globais para caracterizar e relacionar a estrutura dessas toxinas a função. Com o SEQUENCE SLIDER, pudemos elucidar as estruturas de toxinas inéditas cuja sequência era parcialmente conhecida. Esta nova metodologia proposta consiste em avaliar diferentes cadeias laterais contra o coeficiente de correlação em espaço real calculado a partir dos dados cristalográficos. Em paralelo, desenvolvemos o SEQUENCE SLIDER no âmbito do... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Livres sur le sujet "Structural solution"
French, Samuel E. Instructor's solution manual to accompany Fundamentals of structural analysis. Minneapolis/St. Paul : West Pub. Co, 1995.
Trouver le texte intégralKurdo, R. The physical and structural properties of solution-spun tencelfibres. Manchester : UMIST, 1994.
Trouver le texte intégralHaldane, Samuel Arthur Thomas. X-ray structural studies of nitrogenase proteins in solution. Leicester : De Montfort University, 1997.
Trouver le texte intégralF, Doyle James. Modern experimental stress analysis : The solution of partially specified problems. Hoboken, NJ : Wiley, 2004.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Application of finite-element-based solution technologies for viscoplastic structural analyses. [Washington, DC] : National Aeronautics and Space Administration, 1990.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Application of finite-element-based solution technologies for viscoplastic structural analyses. [Washington, DC] : National Aeronautics and Space Administration, 1990.
Trouver le texte intégralL, Lawson Charles, et Dryden Flight Research Facility, dir. Implementation of a block Lanczos algorithm for eigenproblem solution of gyroscopic systems. Edwards, Calif : National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1987.
Trouver le texte intégralFrankel, Jeffrey A. A solution to fiscal procyclicality : The structural budget institutions pioneered by Chile. Cambridge, MA : National Bureau of Economic Research, 2011.
Trouver le texte intégralManolis, Papadrakakis, dir. Parallel solution methods in computational mathematics. Chichester : John Wiley & Sons, 1997.
Trouver le texte intégralManolis, Papadrakakis, dir. Solving large-scale problems in mechanics : The development and application of computational solution methods. Chichester, West Sussex, England : Wiley, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Structural solution"
Galperin, E. I. « Solution of Structural Problems ». Dans Vertical Seismic Profiling and Its Exploration Potential, 280–303. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_10.
Texte intégralTim Huff, P. E. « Problems for Solution ». Dans A Practical Course in Advanced Structural Design, 265–86. First edition. | Boca Raton, FL : CRC Press, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9781003158998-6.
Texte intégralKukula, Pavel, et Michael Valasek. « Kinematical Solution by Structural Approximation ». Dans Computational Kinematics, 323–30. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01947-0_40.
Texte intégralLyamina, Elena. « An Approximate Solution for Plane Strain Rolling of Viscoplastic Sheets ». Dans Structural Integrity, 79–84. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_14.
Texte intégralHjelmstad, Keith D. « Numerical Solution of Ordinary Differential Equations ». Dans Fundamentals of Structural Dynamics, 23–53. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89944-8_2.
Texte intégralAndrusiv, Lubov. « Numerical Issues Affecting the Eigenproblem Solution of Transversely Vibrating Segmented Structures ». Dans Structural Integrity, 255–61. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_57.
Texte intégralOlhoff, Niels. « Solution of Max-Min Problems via Bound Formulation and Mathematical Programming ». Dans Structural Optimization, 397. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_52.
Texte intégralRamana, P. V., et Vivek Singh. « The Emerging Solution for Partial Differential Problems ». Dans Advances in Structural Engineering, 193–203. New Delhi : Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2190-6_18.
Texte intégralGutkowski, W. « Discrete Structural Optimization : Design Problems and Exact Solution Methods ». Dans Discrete Structural Optimization, 1–53. Vienna : Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2754-4_1.
Texte intégralPileni, M. P., T. Zemb, P. Brochette, B. Hickel et J. Milhaud. « Hydrated Electron in Reverse Micelles Used as A Structural Probe ». Dans Surfactants in Solution, 685–96. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-7981-6_11.
Texte intégralActes de conférences sur le sujet "Structural solution"
UTKU, S., et M. SALAMA. « Parallel solution of closely coupled systems ». Dans 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-782.
Texte intégralSTUBSTAD, JOHN, et GEORGE SIMITSES. « Solution methods for one-dimensional viscoelastic problems ». Dans 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-804.
Texte intégralGu, Haozhong, et Aditi Chattopadhyay. « Elasticity solution for delamination buckling of plates ». Dans 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1612.
Texte intégralOrisamolu, I., et Q. Liu. « Finite element reliability solution of stochastic eigenvalue problems ». Dans 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1311.
Texte intégralPARK, K., et W. BELVIN. « Stability and implementation of partitioned CSI solution procedures ». Dans 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1238.
Texte intégralOU, RONGFU, et ROBERT FULTON. « Solution of nonlinear dynamic response on parallel computers ». Dans 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2396.
Texte intégralLasher, E., et C. Bloebaum. « Impact of sensitivity analysis error on optimal solution accuracy ». Dans 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1286.
Texte intégralMIN, J., J. BASS et L. SPRADLEY. « SOLUTION-ADAPTIVE FINITE ELEMENT METHOD IN COMPUTATIONAL FRACTURE MECHANICS ». Dans 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1449.
Texte intégralSTORAASLI, OLAF, EUGENE POOLE, JAMES ORTEGA et ANDREW CLEARY. « Solution of structural analysis problems on a parallel computer ». Dans 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2287.
Texte intégralOJALVO, IRVING. « Improved Solution for System Identification Equations by Epsilon-Decomposition ». Dans 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1146.
Texte intégralRapports d'organisations sur le sujet "Structural solution"
Hammel, Michal. Structural analyses of macromolecules by solution scattering (CRADA Final Report). Office of Scientific and Technical Information (OSTI), octobre 2021. http://dx.doi.org/10.2172/1874024.
Texte intégralLee, Andrew Loyd. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution. Office of Scientific and Technical Information (OSTI), mai 1996. http://dx.doi.org/10.2172/373861.
Texte intégralFrankel, Jeffrey. A Solution to Fiscal Procyclicality : The Structural Budget Institutions Pioneered by Chile. Cambridge, MA : National Bureau of Economic Research, avril 2011. http://dx.doi.org/10.3386/w16945.
Texte intégralSOHN, HOON, JEANETTE R. WAIT et FARRAR, TANNER, NEAL A. APPLICATION OF A WIRELESS SENSOR MODULE AS A DISTRIBUTED STRUCTURAL HEALTH MONITORING SOLUTION. Office of Scientific and Technical Information (OSTI), juin 2002. http://dx.doi.org/10.2172/808001.
Texte intégralKraus, Nicholas C., Lihwa Lin, Ernest R. Smith, Daniel J. Heilman et Robert C. Thomas. Long-Term Structural Solution for the Mouth of Colorado River Navigation Channel, Texas. Fort Belvoir, VA : Defense Technical Information Center, avril 2008. http://dx.doi.org/10.21236/ada480430.
Texte intégralPatel, Reena, David Thompson, Guillermo Riveros, Wayne Hodo, John Peters et Felipe Acosta. Dimensional analysis of structural response in complex biological structures. Engineer Research and Development Center (U.S.), juillet 2021. http://dx.doi.org/10.21079/11681/41082.
Texte intégralAllen, H. C., E. A. Raymond et G. L. Richmond. Surface Structural Studies of Methane Sulfonic Acid at Air/Aqueous Solution Interfaces using Vibrational Sum Frequency Spectroscopy. Fort Belvoir, VA : Defense Technical Information Center, juillet 2000. http://dx.doi.org/10.21236/ada379636.
Texte intégralKansa, E. J. Verification of the NIKE3D structural analysis code by comparison against the analytic solution for a spherical cavity under a far-field uniaxial stress. Office of Scientific and Technical Information (OSTI), janvier 1989. http://dx.doi.org/10.2172/5745682.
Texte intégralWi, Jungyeon. Preventing Styrofoam in Marine Environment through Eco-friendly, Durable Bivalve Buoys of Reduced Impact through structural modification. Intellectual Archive, septembre 2022. http://dx.doi.org/10.32370/iaj.2729.
Texte intégralDeb, Robin, Paramita Mondal et Ardavan Ardeshirilajimi. Bridge Decks : Mitigation of Cracking and Increased Durability—Materials Solution (Phase III). Illinois Center for Transportation, décembre 2020. http://dx.doi.org/10.36501/0197-9191/20-023.
Texte intégral