Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Sugarcane mosaic virus Genetics.

Articles de revues sur le sujet « Sugarcane mosaic virus Genetics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Sugarcane mosaic virus Genetics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Lu, Guilong, Zhoutao Wang, Fu Xu, Yong-Bao Pan, Michael P. Grisham, and Liping Xu. "Sugarcane Mosaic Disease: Characteristics, Identification and Control." Microorganisms 9, no. 9 (September 17, 2021): 1984. http://dx.doi.org/10.3390/microorganisms9091984.

Texte intégral
Résumé :
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and
Styles APA, Harvard, Vancouver, ISO, etc.
2

Viswanathan, R., M. Balamuralikrishnan, and R. Karuppaiah. "Characterization and genetic diversity of sugarcane streak mosaic virus causing mosaic in sugarcane." Virus Genes 36, no. 3 (June 2008): 553–64. http://dx.doi.org/10.1007/s11262-008-0228-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Grisham, M. P., and Y. B. Pan. "A Genetic Shift in the Virus Strains that Cause Mosaic in Louisiana Sugarcane." Plant Disease 91, no. 4 (April 2007): 453–58. http://dx.doi.org/10.1094/pdis-91-4-0453.

Texte intégral
Résumé :
Leaf samples from 693 sugarcane plants showing mosaic symptoms were collected in 2001, 2002, and 2003 at 12 locations within the Louisiana sugarcane industry. Virus isolates associated with the diseased plants were identified using reverse-transcriptase polymerase chain reaction (RT-PCR) to distinguish between Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV). No SCMV strain was associated with any diseased plant collected during the survey. RT-PCR-based restriction fragment length polymorphism (RFLP) analysis showed that SrMV strains I, H, and M were associated with 67, 10, and 2%
Styles APA, Harvard, Vancouver, ISO, etc.
4

XU, Dong-Lin. "Genetic Diversity of Sorghum Mosaic Virus Infecting Sugarcane." ACTA AGRONOMICA SINICA 34, no. 11 (February 2, 2009): 1916–20. http://dx.doi.org/10.3724/sp.j.1006.2008.01916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Perera, M. F., M. P. Filippone, C. J. Ramallo, M. I. Cuenya, M. L. García, L. D. Ploper, and A. P. Castagnaro. "Genetic Diversity Among Viruses Associated with Sugarcane Mosaic Disease in Tucumán, Argentina." Phytopathology® 99, no. 1 (January 2009): 38–49. http://dx.doi.org/10.1094/phyto-99-1-0038.

Texte intégral
Résumé :
Sugarcane leaves with mosaic symptoms were collected in 2006–07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Jian-Guang, Hong-Ying Zheng, Hai-Ru Chen, Michael J. Adams, and Jian-Ping Chen. "Molecular Diversities of Sugarcane mosaic virus and Sorghum mosaic virus Isolates from Yunnan Province, China." Journal of Phytopathology 158, no. 6 (November 2, 2009): 427–32. http://dx.doi.org/10.1111/j.1439-0434.2009.01642.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Yongqiang, Ruiying Liu, Tao Zhou, and Zaifeng Fan. "Genetic diversity and population structure of Sugarcane mosaic virus." Virus Research 171, no. 1 (January 2013): 242–46. http://dx.doi.org/10.1016/j.virusres.2012.10.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Padhi, Abinash, and Karri Ramu. "Genomic evidence of intraspecific recombination in sugarcane mosaic virus." Virus Genes 42, no. 2 (December 31, 2010): 282–85. http://dx.doi.org/10.1007/s11262-010-0564-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dong, Meng, Guangyuan Cheng, Lei Peng, Qian Xu, Yongqing Yang, and Jingsheng Xu. "Transcriptome Analysis of Sugarcane Response to the Infection by Sugarcane Steak Mosaic Virus (SCSMV)." Tropical Plant Biology 10, no. 1 (December 15, 2016): 45–55. http://dx.doi.org/10.1007/s12042-016-9183-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Li, Xifeng Wang, and Guanghe Zhou. "Analyses of maize embryo invasion by Sugarcane mosaic virus." Plant Science 172, no. 1 (January 2007): 131–38. http://dx.doi.org/10.1016/j.plantsci.2006.08.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Gell, Gyöngyvér, Endre Sebestyén, and Ervin Balázs. "Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses." Virus Genes 50, no. 1 (November 13, 2014): 79–86. http://dx.doi.org/10.1007/s11262-014-1142-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hislop, Lillian, Elizabeth Stephanie, Patrick Flannery, Matheus Baseggio, Michael A. Gore, and William F. Tracy. "Sugarcane Mosaic Virus Resistance in the Wisconsin Sweet Corn Diversity Panel." Journal of the American Society for Horticultural Science 146, no. 6 (November 2021): 435–44. http://dx.doi.org/10.21273/jashs05097-21.

Texte intégral
Résumé :
Sugarcane mosaic virus [SCMV (Potyvirus sugarcane mosaic virus)] is an ssRNA virus that negatively affects yield in maize (Zea mays) worldwide. Resistance to SCMV is controlled primarily by a single dominant gene (Scm1). The goal of this study was to identify sweet corn (Z. mays) inbreds that demonstrate resistance to SCMV, confirm the presence of genomic regions previously identified in maize associated with resistance, and identify other resistant loci in sweet corn. Eight plants from each of 563 primarily sweet corn inbred lines were tested for SCMV resistance. Plants were inoculated 14 d a
Styles APA, Harvard, Vancouver, ISO, etc.
13

Guo, Jinlong, Shiwu Gao, Qinliang Lin, Hengbo Wang, Youxiong Que, and Liping Xu. "Transgenic Sugarcane Resistant toSorghum mosaic virusBased on Coat Protein Gene Silencing by RNA Interference." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/861907.

Texte intégral
Résumé :
As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused byPotyvirus sugarcane mosaic virus(SCMV) and/orSorghum mosaic virus(SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with s
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gullner, Gabor, Tamás Kömives, and Richard Gáborjányi. "Notes: Differential Alterations of Glutathione S-Transferase Enzyme Activities in Three Sorghum Varieties Following Viral Infection." Zeitschrift für Naturforschung C 50, no. 5-6 (June 1, 1995): 459–60. http://dx.doi.org/10.1515/znc-1995-5-619.

Texte intégral
Résumé :
Activities of the enzyme glutathione S-transferase were determined in leaves of sorghum varieties of differential susceptibility to infection with sugarcane mosaic virus. Inoculation with the virus resulted in significant induction of the enzyme in the leaves of the immune host, while hitherto unpublished dramatic reductions were detected in the leaves of the systemic host sorghum varieties.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kuntze, L., E. Fuchs, M. Gruntzig, B. Schulz, D. Klein, and A. E. Melchinger. "Resistance of early-maturing European maize germplasm to sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV)." Plant Breeding 116, no. 5 (October 1997): 499–501. http://dx.doi.org/10.1111/j.1439-0523.1997.tb01038.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kasemsin, Paweena, Pissawan Chiemsombat, and Ratchanee Hongprayoon. "Characterization and Genetic Variation of Sugarcane Streak Mosaic Virus, a Poacevirus Infecting Sugarcane in Thailand." Modern Applied Science 10, no. 4 (February 2, 2016): 137. http://dx.doi.org/10.5539/mas.v10n4p137.

Texte intégral
Résumé :
<p>Sugarcane disease surveys were conducted from 2010 to 2014 at major sugarcane growing areas in 5 provinces (Nakhon Pathom, Kanchanaburi, Udon Thani, Khon Kaen, Nakhon Ratchasima) and germplasm collection fields. Random samples of the virus-like sugarcane leaves obtained from the surveyed areas suggested yellow streak mosaic symptoms. Direct antigen coating ELISA using locally produced SCSMV antiserum, revealed widespread incidence of SCSMV in the major sugarcane growing areas and the germplasm collection fields, ranging from 43.48-90.91% and 54.17-100% respectively. The virus isolate
Styles APA, Harvard, Vancouver, ISO, etc.
17

Melchinger, A. E., L. Kuntze, R. K. Gumber, T. Lübberstedt, and E. Fuchs. "Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm." Theoretical and Applied Genetics 96, no. 8 (June 1998): 1151–61. http://dx.doi.org/10.1007/s001220050851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Puchades, Yaquelin, María La O, Joaquín Montalván, Omelio Carvajal, Yamila Martínez, María A. Zardón, José M. Mesa, Sofia Lissbrant, and Ariel D. Arencibia. "Genetic and Symptomatic Characterization of Sugarcane mosaic virus (SCMV) in Cuba." Sugar Tech 18, no. 2 (March 14, 2015): 184–91. http://dx.doi.org/10.1007/s12355-015-0375-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

da Silva, Marcel Fernando, Marcos Cesar Gonçalves, Michael dos Santos Brito, Cibele Nataliane Medeiros, Ricardo Harakava, Marcos Guimarães de Andrade Landell, and Luciana Rossini Pinto. "Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes." PLOS ONE 15, no. 11 (November 9, 2020): e0241493. http://dx.doi.org/10.1371/journal.pone.0241493.

Texte intégral
Résumé :
Sugarcane mosaic virus (SCMV) is the causal agent of sugarcane mosaic disease (SMD) in Brazil; it is mainly controlled by using resistant cultivars. Studies on the changes in sugarcane transcriptome provided the first insights about the molecular basis underlying the genetic resistance to SMD; nonetheless, epigenetic modifications such as cytosine methylation is also informative, considering its roles in gene expression regulation. In our previous study, differentially transcribed fragments (DTFs) were obtained using cDNA-amplified fragment length polymorphism by comparing mock- and SCMV-inocu
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhong, Yongwang, Anyuan Guo, Chunbo Li, Binquan Zhuang, Ming Lai, Chunhong Wei, Jingchu Luo, and Yi li. "Identification of a Naturally Occurring Recombinant Isolate of Sugarcane Mosaic Virus Causing Maize Dwarf Mosaic Disease." Virus Genes 30, no. 1 (January 2005): 75–83. http://dx.doi.org/10.1007/s11262-004-4584-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

González-Arnao, María T., Marzena Banasiak, Carlos A. Cruz-Cruz, Sandy J. Snyman, Manuel Méndez-Chávez, and Sershen Naidoo. "Cryobiotechnological approaches to eliminate Sugarcane mosaic virus (SCMV) in sugarcane (Saccharum spp. l.) infected plants." Cryobiology 109 (December 2022): 14. http://dx.doi.org/10.1016/j.cryobiol.2022.11.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Maisaro, Maisaro, Bambang Sugiharto, and Parawita Dewanti. "The Effect of Concentration and Exposure Time Acyclovir for Elimination Sugarcane Mosaic Virus (SCMV) on The Apical Bud Culture of Sugarcane PS 881." Jurnal ILMU DASAR 18, no. 1 (January 31, 2017): 31. http://dx.doi.org/10.19184/jid.v18i1.1762.

Texte intégral
Résumé :

 
 
 SCMV (Sugarcane Mosaik Virus) is sugarcane crop disease resulting in chlorosis in leaves with the formation of the colors yellow and green intermittents. Based on survey information obtained that the air observation of all varieties of sugarcane was already stricken with the virus SCMV. Even the most formidable attack is on PS881 varieties with the intensity of the attacks reached 80%, so that it is estimated will lose up to 40% of the harvest. The sugarcane is virus free can be obtained via organogenesis in tissue culture method directly on the apical meristem, somatic em
Styles APA, Harvard, Vancouver, ISO, etc.
23

Xing, Yongzhong, Christina Ingvardsen, Raphael Salomon, and Thomas Lübberstedt. "Analysis of sugarcane mosaic virus resistance in maize in an isogenic dihybrid crossing scheme and implications for breeding potyvirus-resistant maize hybrids." Genome 49, no. 10 (October 2006): 1274–82. http://dx.doi.org/10.1139/g06-070.

Texte intégral
Résumé :
The gene action of 2 sugarcane mosaic virus (SCMV) resistance loci in maize, Scmv1 and Scmv2, was evaluated for potyvirus resistance in an isogenic background. All 4 homozygous and 5 heterozygous isogenic genotypes were produced for introgressions of the resistant donor (FAP1360A) alleles at both loci into the susceptible parent (F7) genetic background using simple sequence repeat markers. For SCMV and maize dwarf mosaic virus (MDMV), virus symptoms appeared rapidly in the 3 homozygous genotypes, with susceptibility alleles fixed at 1 or both loci. Although the 9 isogenic genotypes revealed a
Styles APA, Harvard, Vancouver, ISO, etc.
24

Widyaningrum, Suvia, Dwi Ratna Pujiasih, Wardatus Sholeha, Rikno Harmoko, and Bambang Sugiharto. "Induction of resistance to sugarcane mosaic virus by RNA interference targeting coat protein gene silencing in transgenic sugarcane." Molecular Biology Reports 48, no. 3 (March 2021): 3047–54. http://dx.doi.org/10.1007/s11033-021-06325-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

CHENG, Ye. "The complete sequence of a sugarcane mosaic virus isolate causing maize dwarf mosaic disease in China." Science in China Series C 45, no. 3 (2002): 322. http://dx.doi.org/10.1360/02yc9035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

He, Zhen, Zhuozhuo Dong, and Haifeng Gan. "Genetic changes and host adaptability in sugarcane mosaic virus based on complete genome sequences." Molecular Phylogenetics and Evolution 149 (August 2020): 106848. http://dx.doi.org/10.1016/j.ympev.2020.106848.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Moradi, Zohreh, Mohsen Mehrvar, and Ehsan Nazifi. "Genetic diversity and biological characterization of sugarcane streak mosaic virus isolates from Iran." VirusDisease 29, no. 3 (June 7, 2018): 316–23. http://dx.doi.org/10.1007/s13337-018-0461-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jiang, J. X., Z. X. Chen, and X. P. Zhou. "Production of a Monoclonal Antibody to Sugarcane mosaic virus and its Application for Virus Detection in China." Journal of Phytopathology 151, no. 6 (June 2003): 361–64. http://dx.doi.org/10.1046/j.1439-0434.2003.00736.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Xia, Zihao, Zhenxing Zhao, Mingjun Li, Ling Chen, Zhiyuan Jiao, Yuanhua Wu, Tao Zhou, Weichang Yu, and Zaifeng Fan. "Identification of miRNAs and their targets in maize in response to Sugarcane mosaic virus infection." Plant Physiology and Biochemistry 125 (April 2018): 143–52. http://dx.doi.org/10.1016/j.plaphy.2018.01.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gustafson, Timothy J., Natalia Leon, Shawn M. Kaeppler, and William F. Tracy. "Genetic Analysis of Sugarcane mosaic virus Resistance in the Wisconsin Diversity Panel of Maize." Crop Science 58, no. 5 (August 23, 2018): 1853–65. http://dx.doi.org/10.2135/cropsci2017.11.0675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhang, Rong-Yue, Wen-Feng Li, Ying-Kun Huang, Chun-Hua Pu, Xiao-Yan Wang, Hong-Li Shan, Xiao-Yan Cang, Zhi-Ming Luo, and Jiong Yin. "Genetic diversity and population structure of Sugarcane streak mosaic virus in Yunnan province, China." Tropical Plant Pathology 43, no. 6 (August 3, 2018): 514–19. http://dx.doi.org/10.1007/s40858-018-0244-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

James, A. P., R. J. Geijskes, J. L. Dale, and R. M. Harding. "Development of a Novel Rolling-Circle Amplification Technique to Detect Banana streak virus that also Discriminates Between Integrated and Episomal Virus Sequences." Plant Disease 95, no. 1 (January 2011): 57–62. http://dx.doi.org/10.1094/pdis-07-10-0519.

Texte intégral
Résumé :
Banana plants are hosts to a large number of Banana streak virus (BSV) species. However, diagnostic methods for BSV are inadequate because of the considerable genetic and serological diversity among BSV isolates and the presence of integrated BSV sequences in some banana cultivars which leads to false positives. In this study, a sequence-nonspecific, rolling-circle amplification (RCA) technique was developed and shown to overcome these limitations for the detection and subsequent characterization of BSV isolates infecting banana. This technique was shown to discriminate between integrated and
Styles APA, Harvard, Vancouver, ISO, etc.
33

SOUZA, ISABEL REGINA PRAZERES DE, JOSÉ HENRIQUE SOLER GUILHEN, CAMILO DE LELIS TEIXEIRA DE ANDRADE, MARCOS DE OLIVEIRA PINTO, UBIRACI GOMES DE PAULA LANA, and MARIA MARTA PASTINA. "MAJOR EFFECT QTL ON CHROMOSOME 3 CONFERRING MAIZE RESISTANCE TO SUGARCANE MOSAIC VIRUS." Revista Brasileira de Milho e Sorgo 18, no. 3 (January 23, 2020): 322–39. http://dx.doi.org/10.18512/1980-6477/rbms.v18n3p322-339.

Texte intégral
Résumé :
The Sugarcane mosaic virus (SCMV), a maize pathogen epidemic worldwide, is the causal agent of common mosaic, one of the most important viral diseases in Brazil. In this study, we mapped and characterized quantitative trait loci (QTL) conferring resistance to SCMV in a maize population consisting of 127 F2:3 families from the cross between two Brazilian maize inbred lines, L18 (resistant) × L19 (susceptible). Field trials were carried out in two years to evaluate the F2:3 families according to a resistance score after artificial inoculation. QTLs were detected via composite interval mapping, u
Styles APA, Harvard, Vancouver, ISO, etc.
34

Pokorný, R., and M. Porubová. "Evaluation of the resistance of maize (Zea mays L.) breeding materials to sugarcane mosaic virus." Cereal Research Communications 28, no. 3 (September 2000): 329–36. http://dx.doi.org/10.1007/bf03543612.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Moradi, Zohreh, Mohsen Mehrvar, Ehsan Nazifi, and Mohammad Zakiaghl. "The complete genome sequences of two naturally occurring recombinant isolates of Sugarcane mosaic virus from Iran." Virus Genes 52, no. 2 (February 23, 2016): 270–80. http://dx.doi.org/10.1007/s11262-016-1302-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Apriasti, Retnosari, Suvia Widyaningrum, Weny N. Hidayati, Widhi D. Sawitri, Nurmalasari Darsono, Toshiharu Hase, and Bambang Sugiharto. "Full sequence of the coat protein gene is required for the induction of pathogen-derived resistance against sugarcane mosaic virus in transgenic sugarcane." Molecular Biology Reports 45, no. 6 (August 31, 2018): 2749–58. http://dx.doi.org/10.1007/s11033-018-4326-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Roostika, Ika, Sedyo Harsono, Darda Efendi, Deden Sukmadjaja, and Cece Suhara. "Uji Efikasi Teknik Kultur Meristem dan Kemoterapi untuk Eliminasi Sugarcane Streak Mosaic Virus (SCSMV) pada Tebu Efficacy of Meristem Culture and Chemotherapy for Elimination of Sugarcane." Buletin Tanaman Tembakau, Serat & Minyak Industri 8, no. 2 (January 9, 2017): 55. http://dx.doi.org/10.21082/btsm.v8n2.2016.55-64.

Texte intégral
Résumé :
<p>Penggunaan benih bebas virus merupakan salah satu cara pengendalian penyakit virus. Jaringan tanaman dapat dibebaskan dari virus melalui aplikasi teknik eliminasi virus, seperti termoterapi, kemoterapi, kultur meristem, dan krioterapi. Tujuan penelitian ini adalah untuk menguji respon varietas tebu terhadap perlakuan teknik kultur meristem dan kemoterapi dengan bahan antiviral, serta untuk mengetahui efektivitasnya dalam mengeliminasi virus <em>sugarcane streak mosaic virus</em> (SCSMV) pada tebu. Penelitian ini dilakukan pada April−November 2015 di Laboratorium Kultur Jar
Styles APA, Harvard, Vancouver, ISO, etc.
38

Xu, M. L., A. E. Melchinger, and T. Lübberstedt. "Origin of Scm1 and Scm2– two loci conferring resistance to sugarcane mosaic virus (SCMV) in maize." Theoretical and Applied Genetics 100, no. 6 (April 2000): 934–41. http://dx.doi.org/10.1007/s001220051373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Awata, Luka A. O., Yoseph Beyene, Manje Gowda, Suresh L. M., McDonald B. Jumbo, Pangirayi Tongoona, Eric Danquah, et al. "Genetic Analysis of QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations." Genes 11, no. 1 (December 26, 2019): 32. http://dx.doi.org/10.3390/genes11010032.

Texte intégral
Résumé :
Maize lethal necrosis (MLN) occurs when maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) co-infect maize plant. Yield loss of up to 100% can be experienced under severe infections. Identification and validation of genomic regions and their flanking markers can facilitate marker assisted breeding for resistance to MLN. To understand the status of previously identified quantitative trait loci (QTL)in diverse genetic background, F3 progenies derived from seven bi-parental populations were genotyped using 500 selected kompetitive allele specific PCR (KASP) SNPs. The F3 progeni
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bagyalakshmi, K., B. Parameswari, C. Chinnaraja, R. Karuppaiah, V. Ganesh Kumar, and R. Viswanathan. "Genetic variability and potential recombination events in the HC-Pro gene of sugarcane streak mosaic virus." Archives of Virology 157, no. 7 (April 6, 2012): 1371–75. http://dx.doi.org/10.1007/s00705-012-1297-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Gao, Bo, Xiao-Wen Cui, Xiang-Dong Li, Chun-Qing Zhang, and Hong-Qin Miao. "Complete genomic sequence analysis of a highly virulent isolate revealed a novel strain of Sugarcane mosaic virus." Virus Genes 43, no. 3 (July 22, 2011): 390–97. http://dx.doi.org/10.1007/s11262-011-0644-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Quint, M., R. Mihaljevic, C. Dussle, M. Xu, A. Melchinger, and T. Lübberstedt. "Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize." Theoretical and Applied Genetics 105, no. 2 (August 2002): 355–63. http://dx.doi.org/10.1007/s00122-002-0953-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Jiang, Lu, Christina Rønn Ingvardsen, Thomas Lübberstedt, and Mingliang Xu. "The Pic19 NBS-LRR gene family members are closely linked to Scmv1, but not involved in maize resistance to sugarcane mosaic virus." Genome 51, no. 9 (September 2008): 673–84. http://dx.doi.org/10.1139/g08-055.

Texte intégral
Résumé :
Sugarcane mosaic virus (SCMV) is the causal pathogen for a severe mosaic virus disease of maize worldwide. In our previous research, the maize resistance gene analog (RGA) Pic19 and its three cognate BAC contigs were mapped to the same region as the SCMV resistance gene Scmv1. Here we report the isolation and characterization of the Pic19R gene family members from the inbred line FAP1360A, which shows complete resistance to SCMV. Two primer pairs were designed based on the conserved regions among the known Pic19 paralogs and used for rapid amplification of cDNA ends of FAP1360A. Six full-lengt
Styles APA, Harvard, Vancouver, ISO, etc.
44

Xu, M. L., A. E. Melchinger, X. C. Xia, and T. Lübberstedt. "High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers." Molecular and General Genetics MGG 261, no. 3 (April 1999): 574–81. http://dx.doi.org/10.1007/s004380051003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

He, Zhen, Ryosuke Yasaka, Wenfeng Li, Shifang Li, and Kazusato Ohshima. "Genetic structure of populations of sugarcane streak mosaic virus in China: Comparison with the populations in India." Virus Research 211 (January 2016): 103–16. http://dx.doi.org/10.1016/j.virusres.2015.09.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dangora, D. Balarabe, Adama Yahaya, Azmat U. U. Khan, and M. Aisha Zangoma. "Identification of virus isolates inducing mosaic of sugarcane in Makarfi Local Government Area of Kaduna State, Nigeria." African Journal of Biotechnology 13, no. 12 (March 19, 2014): 1351–57. http://dx.doi.org/10.5897/ajb2013.13467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wu, Liuji, Shunxi Wang, Xiao Chen, Xintao Wang, Liancheng Wu, Xiaofeng Zu, and Yanhui Chen. "Proteomic and Phytohormone Analysis of the Response of Maize (Zea mays L.) Seedlings to Sugarcane Mosaic Virus." PLoS ONE 8, no. 7 (July 23, 2013): e70295. http://dx.doi.org/10.1371/journal.pone.0070295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Xia, Zihao, Jun Peng, Yongqiang Li, Ling Chen, Shuai Li, Tao Zhou, and Zaifeng Fan. "Characterization of Small Interfering RNAs Derived from Sugarcane Mosaic Virus in Infected Maize Plants by Deep Sequencing." PLoS ONE 9, no. 5 (May 12, 2014): e97013. http://dx.doi.org/10.1371/journal.pone.0097013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Xu, D. L., G. H. Zhou, Y. J. Xie, R. Mock, and R. Li. "Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae." Virus Genes 40, no. 3 (February 17, 2010): 432–39. http://dx.doi.org/10.1007/s11262-010-0457-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sajed, Ali, Ahmad Nasir Idrees, Ali Arfan, Aslam Usman, Munim Farooq Abdul, Tariq Muhammad, Tabassum Bushra, et al. "Genetic variability in coat protein gene of sugarcane mosaic virus in Pakistan and its relationship to other strains." African Journal of Biotechnology 13, no. 39 (September 24, 2014): 3950–65. http://dx.doi.org/10.5897/ajb2014.13691.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!