Littérature scientifique sur le sujet « Surface acoustic wave sensor »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Surface acoustic wave sensor ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Surface acoustic wave sensor":

1

da Cunha, Mauricio Pereira. « Surface acoustic wave sensor ». Journal of the Acoustical Society of America 120, no 5 (2006) : 2397. http://dx.doi.org/10.1121/1.2395087.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kalantar-Zadeh, Kourosh, et Wojtek Wlodarski. « Surface acoustic wave sensor ». Journal of the Acoustical Society of America 120, no 5 (2006) : 2409. http://dx.doi.org/10.1121/1.2395140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Oglesby, Donald M., Billy T. Upchurch, Bradley D. Leighty, James P. Collman, Xumu Zhang et P. C. Hermann. « Surface Acoustic Wave Oxygen Sensor ». Analytical Chemistry 66, no 17 (septembre 1994) : 2745–51. http://dx.doi.org/10.1021/ac00089a023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Talbi, A., F. Sarry, O. Elmazria, M. B. Assouar, L. Bouvot et P. Alnot. « Surface Acoustic Wave Pressure Sensor ». Ferroelectrics 273, no 1 (janvier 2002) : 53–58. http://dx.doi.org/10.1080/00150190211800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cook, James D. « Encapsulated surface acoustic wave sensor ». Journal of the Acoustical Society of America 121, no 5 (2007) : 2482. http://dx.doi.org/10.1121/1.2739144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Caliendo, C., E. Verona, A. D'Amico, A. Furlani, G. Iucci et M. V. Russo. « Surface acoustic wave humidity sensor ». Sensors and Actuators B : Chemical 16, no 1-3 (octobre 1993) : 288–92. http://dx.doi.org/10.1016/0925-4005(93)85197-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dierkes, M., et U. Hilleringmann. « Telemetric surface acoustic wave sensor for humidity ». Advances in Radio Science 1 (5 mai 2003) : 131–33. http://dx.doi.org/10.5194/ars-1-131-2003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Abstract. Surface acoustic wave sensors consist of a piezoelectric substrate with metal interdigital transducers (IDT) on top. The acoustic waves are generated on the surface of the substrate by a radio wave, as it is well known in band pass filters. The devices can be used as wireless telemetric sensors for temperature and humidity, transmitting the sensed signal as a shift of the sensor’s resonance frequency.
8

Länge, Kerstin. « Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection : A Review ». Sensors 19, no 24 (6 décembre 2019) : 5382. http://dx.doi.org/10.3390/s19245382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Bulk acoustic wave (BAW) and surface acoustic wave (SAW) sensor devices have successfully been used in a wide variety of gas sensing, liquid sensing, and biosensing applications. Devices include BAW sensors using thickness shear modes and SAW sensors using Rayleigh waves or horizontally polarized shear waves (HPSWs). Analyte specificity and selectivity of the sensors are determined by the sensor coatings. If a group of analytes is to be detected or if only selective coatings (i.e., coatings responding to more than one analyte) are available, the use of multi-sensor arrays is advantageous, as the evaluation of the resulting signal patterns allows qualitative and quantitative characterization of the sample. Virtual sensor arrays utilize only one sensor but combine it with enhanced signal evaluation methods or preceding sample separation, which results in similar results as obtained with multi-sensor arrays. Both array types have shown to be promising with regard to system integration and low costs. This review discusses principles and design considerations for acoustic multi-sensor and virtual sensor arrays and outlines the use of these arrays in multi-analyte detection applications, focusing mainly on developments of the past decade.
9

Kurosawa, Minoru, Yoshimitsu Fukuda, Masaya Takasaki et Toshiro Higuchi. « A surface-acoustic-wave gyro sensor ». Sensors and Actuators A : Physical 66, no 1-3 (avril 1998) : 33–39. http://dx.doi.org/10.1016/s0924-4247(97)01713-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Beck, K., T. Kunzelmann, M. von Schickfus et S. Hunklinger. « Contactless surface acoustic wave gas sensor ». Sensors and Actuators A : Physical 76, no 1-3 (août 1999) : 103–6. http://dx.doi.org/10.1016/s0924-4247(98)00359-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Surface acoustic wave sensor":

1

Haskell, Reichl B. « A Surface Acoustic Wave Mercury Vapor Sensor ». Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/HaskellRB2003.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gizeli, Electra. « New acoustic wave sensor geometries ». Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sehra, Gurmukh S. « Surface acoustic wave based flavour sensor system ». Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Banerjee, Markus K. « Acoustic wave interactions with viscous liquids spreading in the acoustic path of a surface acoustic wave sensor ». Thesis, Nottingham Trent University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Parmar, Biren Jagadish. « Development Of Point-Contact Surface Acoustic Wave Based Sensor System ». Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Surface Acoustic Waves (SAW) fall under a special category of elastic waves that need a material medium to propagate. The energy of these waves is confined to a limited depth below the surface over which they propagate, and their amplitudes decay with increasing depth. As a consequence of their being a surface phenomenon, they are easily accessible for transduction. Due to this reason, a lot of research has been carried out in the area, which has resulted in two very popular applications of SAW - SAW devices and in Non-Destructive Testing and Evaluation. A major restriction of SAW devices is that the SAW need a piezoelectric medium for generation, propagation and reception. This thesis reports the attempt made to overcome this restriction and utilize the SAW on non-piezoelectric substrates for sensing capabilities. The velocity of the SAW is known to be dependent purely on the material properties, specifically the elastic constants and material density. This dependence is the motivation for the sensor system developed in the present work. Information on the survey of the methods suitable for the generation and reception of SAW on non-piezoelectric substrates has been included in the thesis. This is followed by the theoretical and practical details of the method chosen for the present work - the point source/point receiver method. Advantages of this method include a simple and inexpensive fabrication procedure, easy customizability and the absence of restrictions due to directivity of the SAW generated. The transducers consist of a conically shaped PZT element attached to a backing material. When the piezoelectric material on the transmitter side is electrically excited, they undergo mechanical oscillations. When coupled to the surface of a solid, the oscillations are transferred onto the solid, which then acts as a point source for SAW. At the receiver, placed at a distance from the source on the same side, the received mechanical oscillations are converted into an electrical signal as a consequence of the direct piezoelectric effect. The details of the fabrication and preliminary trials conducted on metallic as well as non-metallic samples are given. Various applications have been envisaged for this relatively simple sensor system. One of them is in the field of pressure sensing. Experiments have been carried out to employ the acoustoelastic property of a flexible diaphragm made of silicone rubber sheet to measure pressure. The diaphragm, when exposed to a pressure on one side, experiences a varying strain field on the surface. The velocity of SAW generated on the stressed surface varies in accordance with the applied stress, and the consequent strain field generated. To verify the acoustoelastic phenomenon in silicone rubber, SAW velocities have been measured in longitudinal and transverse directions with respect to that of the applied tensile strain. Similar measurements are carried out with a pressure variant inducing the strain. The non-invasive nature of this setup lends it to be used for in situ measurement of pressure. The second application is in the field of elastography. Traditional methods of diagnosis to detect the presence of sub-epidermal lesions, some tumors of the breast, liver and prostate, intensity of skin irritation etc have been mainly by palpation. The sensor system developed in this work enables to overcome the restrictive usage and occasional failure to detect minute abnormal symptoms. In vitro trials have been conducted on tissue phantoms made out of poly (vinyl alcohol) (PVA-C) samples of varying stiffnesses. The results obtained and a discussion on the same are presented.
6

Friedlander, Jeffrey B. « Wireless Strain Measurement with Surface Acoustic Wave Sensors ». The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306874020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kaplan, Emrah. « Surface acoustic wave enhanced electroanalytical sensors ». Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6557/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
In the last decade, miniaturised “lab-on-a-chip” (LOC) devices have attracted significant interest in academia and industry. LOC sensors for electrochemical analysis now commonly reach picomolar in sensitivities, using only microliter-sized samples. One of the major drawbacks of this platform is the diffusion layer that appears as a limiting factor for the sensitivity level. In this thesis, a new technique was developed to enhance the sensitivity of electroanalytical sensors by increasing the mass transfer in the medium. The final device design was to be used for early detection of cancer diseases which causes bleeding in the digestive system. The diagnostic device was proposed to give reliable and repeatable results by additional modifications on its design. The sensitivity enhanced-sensor model was achieved by combining the surface acoustic wave (SAW) technology with the electroanalytical sensing platform. The technique was practically tested on a diagnostic device model and a biosensing platform. A novel, substrate (TMB) based label-free Hb sensing method is developed and tested. Moreover, the technique was further developed by changing the sensing process. Instead of forming the sensitive layer on the electrodes it was localised on polystyrene wells by a rapid one-step process. Results showed that the use of acoustic streaming, generated by SAW, increases the current flow and improves the sensitivity of amperometric sensors by a factor of 6 while only requiring microliter scale sample volumes. The heating and streaming induced by the SAW removes the small random contributions made by the natural convection and temperature variation which complicate the measurements. Therefore, the method offers stabilised conditions for more reliable and repeatable measurements. The label-free detection technique proved to be giving relevant data, according to the hemoglobin concentration. It has fewer steps than ELISA and has only one antibody. Therefore, it is quick and the cross-reactivity of the second antibody is eliminated from the system. The additional modifications made on the technique decreased the time to prepare the sensing platform because the passivation steps (i.e., pegylation), prior to structuring a sensitive layer were ignored. This avoidance also increased the reliability and repeatability of the measurements.
8

Fisher, Brian. « Surface Acoustic Wave (SAW) Cryogenic Liquid and Hydrogen Gas Sensors ». Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a passive (or low-power), wireless, gas detection system, which continuously monitors multiple nodes and reports temperature and H2 gas presence. Passive, wireless, cryogenic liquid level and hydrogen (H2) gas sensors were developed on a platform technology called Orthogonal Frequency Coded (OFC) surface acoustic wave (SAW) radio frequency identification (RFID) tag sensors. The OFC-SAW was shown to be mechanically resistant to failure due to thermal shock from repeated cycles between room to liquid nitrogen temperature. This suggests that these tags are ideal for integration into cryogenic Dewar environments for the purposes of cryogenic liquid level detection. Three OFC-SAW H2 gas sensors were simultaneously wirelessly interrogated while being exposed to various flow rates of H2 gas. Rapid H2 detection was achieved for flow rates as low as 1ccm of a 2% H2, 98% N2 mixture. A novel method and theory to extract the electrical and mechanical properties of a semiconducting and high conductivity thin-film using SAW amplitude and velocity dispersion measurements were also developed. The SAW device was shown to be a useful tool in analysis and characterization of ultrathin and thin films and physical phenomena such as gas adsorption and desorption mechanisms.?
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
9

Gruetzmann, Anna [Verfasser]. « Wireless ECG Sensor in Surface Acoustic Wave Transponder Technology / Anna Gruetzmann ». München : Verlag Dr. Hut, 2010. http://d-nb.info/1009484524/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hamidon, Mohd Nizar. « Fabrication of high temperature surface acoustic wave devices for sensor applications ». Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Surface acoustic wave sensor":

1

Michael, Thompson. Surface-launched acoustic wave sensors : Chemical sensing and thin-film characterization. New York : Wiley, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Glennie, Derek John. Fiber optic sensors for the detection of surface acoustic waves on metals. [Downsview, Ont.] : University of Toronto, [Institute for Aerospace Studies], 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Datta, Supriyo. Surface acoustic wave devices. Englewood Cliffs, N.J : Prentice-Hall, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Datta, Supriyo. Surface acoustic wave devices. Englewood Cliffs : Prentice-Hall, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hashimoto, Ken-ya. Surface Acoustic Wave Devices in Telecommunications. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04223-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rosenbaum, Joel F. Bulk acoustic wave theory and devices. Boston : Artech House, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Morgan, David P. Surface-wave devices for signal processing. 2e éd. Amsterdam : Elsevier, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Morgan, David P. Surface-wave devices for signal processing. Amsterdam : Elsevier, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

P, Morgan David. Surface-wave devices for signal processing. Amsterdam : Elsevier, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Glennie, Derek John. Fiber optic sensors for the detection of surface acoustics waves on metals. Ottawa : National Library of Canada, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Surface acoustic wave sensor":

1

Caliendo, C., E. Verona et A. D’Amico. « Surface Acoustic Wave (SAW) Gas Sensors ». Dans Gas Sensors, 281–306. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2737-0_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nieuwenhuizen, M. S., et A. J. Nederlof. « Silicon Based Surface Acoustic Wave Gas Sensors ». Dans Sensors and Sensory Systems for an Electronic Nose, 131–45. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7985-8_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nelissen, Hubertus F. M., Menno R. de Jong, Fokke Venema, Martinus C. Feiters et Roeland J. M. Nolte. « Cyclodextrins as Receptors on Surface Acoustic Wave Devices ». Dans Sensor Technology in the Netherlands : State of the Art, 219–22. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5010-1_35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wagner, Jens, Manfred von Schickfus et Siegfried Hunklinger. « Highly sensitive vapor sensor using an inductively coupled surface acoustic wave sensor ». Dans Transducers ’01 Eurosensors XV, 1738–41. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

McGill, R. Andrew, J. W. Grate et Mark R. Anderson. « Surface and Interfacial Properties of Surface Acoustic Wave Gas Sensors ». Dans Interfacial Design and Chemical Sensing, 280–94. Washington, DC : American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0561.ch024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Čiplys, D., A. Sereika, R. Rimeika, R. Gaska, M. Shur, J. Yang et M. Asif Khan. « III-Nitride Based Ultraviolet Surface Acoustic Wave Sensors ». Dans UV Solid-State Light Emitters and Detectors, 239–46. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2103-9_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Marquis, B. T., D. J. Frankel, W. E. Bruehs et J. F. Vetelino. « A Study of Metallic Corrosion Using a Surface Acoustic Wave Sensor ». Dans Review of Progress in Quantitative Nondestructive Evaluation, 625–32. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5947-4_82.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Behera, Basudeba. « Development of Dual-Friction Drive Based Piezoelectric Surface Acoustic Wave Actuator ». Dans Interdigital Sensors, 351–68. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62684-6_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Luo, Wei, Qui Yun Fu, Jian Lin Wang, Huan Liu et Dong Xiang Zhou. « Accurate FEM/BEM Simulation of Wireless Passive Surface Acoustic Wave Sensors ». Dans High-Performance Ceramics V, 198–201. Stafa : Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.198.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wohltjen, H., N. L. Jarvis et J. R. Lint. « Surface Acoustic Wave Chemical Microsensors and Sensor Arrays for Industrial Process Control and Pollution Prevention ». Dans ACS Symposium Series, 86–102. Washington, DC : American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0508.ch009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Surface acoustic wave sensor":

1

Wang, Yizhong, Zheng Li, Lifeng Qin, Minking K. Chyu et Qing-Ming Wang. « Surface acoustic wave flow sensor ». Dans 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS). IEEE, 2011. http://dx.doi.org/10.1109/fcs.2011.5977735.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ahmad, N. « Surface Acoustic Wave Flow Sensor ». Dans IEEE 1985 Ultrasonics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/ultsym.1985.198556.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ju, J., Y. Yamagata, T. Higuchi, K. Inoue et H. Ohmori. « High Frequency Surface Acoustic Wave Atomizer ». Dans TRANSDUCERS '07 & ; Eurosensors XXI. 2007 14th International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, 2007. http://dx.doi.org/10.1109/sensor.2007.4300371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

White, R. M. « Surface Acoustic Wave Sensors ». Dans IEEE 1985 Ultrasonics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/ultsym.1985.198558.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nomura, T., K. Nishida, A. Saitoh et T. Mochiizuki. « Methanol sensor using a surface acoustic wave ». Dans 2008 IEEE International Frequency Control Symposium. IEEE, 2008. http://dx.doi.org/10.1109/freq.2008.4623054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hollinger, Richard D., Anikumar R. Tellakula, C. T. Li, Vasundara V. Varadan et Vijay K. Varadan. « Wireless surface-acoustic-wave-based humidity sensor ». Dans Symposium on Micromachining and Microfabrication, sous la direction de Patrick J. French et Eric Peeters. SPIE, 1999. http://dx.doi.org/10.1117/12.360509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Benetti, M., D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti et E. Verona. « Pressure sensor based on surface acoustic wave resonators ». Dans 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Clarke, P., R. Lec et J. F. Vetelino. « A surface generated acoustic wave liquid microsensor ». Dans IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop. IEEE, 1990. http://dx.doi.org/10.1109/solsen.1990.109848.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Calle, Fernando, T. Palacios, J. Pedros et J. Grajal. « Surface-acoustic-wave-controlled photodetectors ». Dans Second European Workshop on Optical Fibre Sensors. SPIE, 2004. http://dx.doi.org/10.1117/12.566698.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shiokawa, S., et J. Kondoh. « Surface acoustic wave sensor for liquid-phase application ». Dans 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium. IEEE, 1999. http://dx.doi.org/10.1109/ultsym.1999.849437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Surface acoustic wave sensor":

1

Joshua Caron. SURFACE ACOUSTIC WAVE MERCURY VAPOR SENSOR. Office of Scientific and Technical Information (OSTI), juin 1998. http://dx.doi.org/10.2172/807870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

JOSHUA CARON. SURFACE ACOUSTIC WAVE MERCURY VAPOR SENSOR. Office of Scientific and Technical Information (OSTI), septembre 1998. http://dx.doi.org/10.2172/7107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

HO, CLIFFORD K., JEROME L. WRIGHT, LUCAS K. MCGRATH, ERIC R. LINDGREN et KIM S. RAWLINSON. Field Demonstrations of Chemiresistor and Surface Acoustic Wave Microchemical Sensors at the Nevada Test Site. Office of Scientific and Technical Information (OSTI), mars 2003. http://dx.doi.org/10.2172/809994.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Yizhong, Minking Chyu et Qing-Ming Wang. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission. Office of Scientific and Technical Information (OSTI), février 2013. http://dx.doi.org/10.2172/1164224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Klint, B. W., P. R. Dale et C. Stephenson. Surface acoustic wave sensors/gas chromatography ; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process. Office of Scientific and Technical Information (OSTI), décembre 1997. http://dx.doi.org/10.2172/663479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lei, Yu. Wireless 3D Nanorod Composite Arrays based High Temperature Surface-Acoustic-Wave Sensors for Selective Gas Detection through Machine Learning Algorithms (Final Report). Office of Scientific and Technical Information (OSTI), novembre 2019. http://dx.doi.org/10.2172/1579515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Johnson, Rolland Paul, Mona Zaghluol, Andrei Afanasev et Boqun Dong. Surface Acoustic Wave Enhancement of Photocathode Performance. Office of Scientific and Technical Information (OSTI), octobre 2018. http://dx.doi.org/10.2172/1476852.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

King, Michael B., et Jeffrey C. Andle. Surface Acoustic Wave Band Elimination Filter. Phase 1. Fort Belvoir, VA : Defense Technical Information Center, janvier 1988. http://dx.doi.org/10.21236/ada207051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

McGowan, Raymond, John Kosinski, Jeffrey Himmel, Richard Piekarz et Theodore Lukaszek. Frequency Trimming Technique for Surface Acoustic Wave Devices. Fort Belvoir, VA : Defense Technical Information Center, juin 1992. http://dx.doi.org/10.21236/ada261465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cullen, D. E., et T. W. Grudkowski. Research and Development of Subsurface Acoustic Wave Devices for Sensor Applications. Fort Belvoir, VA : Defense Technical Information Center, janvier 1985. http://dx.doi.org/10.21236/ada152197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie