Thèses sur le sujet « Surfaces del Pezzo »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 29 meilleures thèses pour votre recherche sur le sujet « Surfaces del Pezzo ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Wilson, Andrew. « Smooth exceptional del Pezzo surfaces ». Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4735.
Texte intégralLoughran, Daniel Thomas. « Manin's conjecture for del Pezzo surfaces ». Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544344.
Texte intégralKosta, Dimitra. « Del Pezzo surfaces with Du Val singularities ». Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3934.
Texte intégralUeda, Kazushi. « Homological mirror symmetry for toric del Pezzo surfaces ». 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Texte intégral0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Manzaroli, Matilde. « Real algebraic curves in real del Pezzo surfaces ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX017/document.
Texte intégralThe study of the topology of real algebraic varieties dates back to the work of Harnack, Klein and Hilbert in the 19th century; in particular, the isotopy type classification of real algebraic curves with a fixed degree in RP2 is a classical subject that has undergone considerable evolution. On the other hand, apart from studies concerning Hirzebruch surfaces and at most degree 3 surfaces in RP3, not much is known for more general ambient surfaces. In particular, this is because varieties constructed using the patchworking method are hypersurfaces of toric varieties. However, there are many other real algebraic surfaces. Among these are the real rational surfaces, and more particularly the $mathbb{R}$-minimal surfaces. In this thesis, we extend the study of the topological types realized by real algebraic curves to the real minimal del Pezzo surfaces of degree 1 and 2. Furthermore, we end the classification of separating and non-separating real algebraic curves of bidegree $(5,5)$ in the quadric ellipsoid
Kleven, Stephanie. « Counting points of bounded height on del Pezzo surfaces ». Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2948.
Texte intégralMartinez, Garcia Jesus. « Dynamic alpha-invariants of del Pezzo surfaces with boundary ». Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8090.
Texte intégralBoitrel, Aurore. « Groupes d'automorphismes des surfaces del Pezzo sur un corps parfait ». Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASM002.
Texte intégralDel Pezzo surfaces are algebraic surfaces with quite special properties, that play an importantpart in the classification of projective algebraic surfaces up to birational transformations.The classification of smooth rational del Pezzo surfaces of degree d over an arbitraryperfect field is classical for d = 7, 8, 9 and new for d = 6. The same is the case for thedescription of their groups of automorphisms. Their classification and the description of theirautomorphism groups is much more difficult for d ≤ 5, as one can see already if the groundfield is the field of real numbers, and the classification is open over a general perfect field.Partial classifications exist over finite fields. Accordingly, we do not know their automorphismgroups in general.The objective of the thesis is to classify the smooth rational del Pezzo surfaces of degreed = 5 and d = 4 over an arbitrary perfect field and describe their automorphism groups.Due to the difficulty of the project, the case d = 4 will only be studied over the field ofreal numbers
Festi, D. « Topics in the arithmetic of Del Pezzo and K3 surfaces ». Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/411137.
Texte intégralTesta, Damiano. « The Severi problem for rational curves on del Pezzo surfaces ». Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30356.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 141-142).
Let X be a smooth projective surface and choose a curve C on X. Let VC be the set of all irreducible divisors on X linearly equivalent to C whose normalization is a rational curve. The Severi problem for rational curves on X with divisor class [C] consists of studying the irreducibility of the spaces VC as C varies among all curves on X. In this thesis, we prove that all the spaces VC are irreducible in the case where X is a del Pezzo surface of degree at least two. If the degree of X is one, then we prove the same result only for a general X, with the exception of V-KX, where KX is the canonical divisor of X. It is well known that for general del Pezzo surface of degree one, V-KX consists of twelve points, and thus cannot be irreducible.
by Damiano Testa.
Ph.D.
Le, Boudec Pierre. « Répartition des points rationnels sur certaines surfaces de del Pezzo ». Paris 7, 2012. http://www.theses.fr/2012PA077138.
Texte intégralIn this thesis, we are interested in counting rational points on certain algebraic varieties. A conjecture of Manin predicts precisely the asymptotic behaviour of the number of rational points of bounded height on Fano varieties. Our main goal is to prove Manin's conjecture for some examples of del Pezzo surfaces defined over Q. For this, we resort to universal torsors to parametrize the rational points and then we make use of various analytic number theory results, such as for instance the equidistribution of the values of certain divisor functions in arithmetic progressions. To begin with, we deal in a first part with the cases of three quartic del Pezzo surfaces, whose singularity types are respectively 3A1, A1+A2 and A3. Afterwards, we deal in a second part with the cases of two cubic surfaces, whose singularity types are respectively 2A2+A1 and D4. The former is only the third example of non-toric cubic surface for which Manin's conjecture is proved. Note in addition that the work about the latter improves on a result of Browning and answers a problem initially posed by Tschinkel. Finally, in an appendix, as another application of the equidistribution results mentioned above, we establish an asymptotic formula for the number of power-free values of the r variables polynomial t1⋯tr−1
Blunk, Mark Alan. « Del Pezzo surfaces of degree 6 over an arbitrary field ». Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835130531&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texte intégralDesjardins, Julie. « Densité des points rationnels sur les surfaces elliptiques et les surfaces de Del Pezzo de degré 1 ». Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC229/document.
Texte intégralLet E→P1 be an non-trivial elliptic surface over Q with base P1. We are interested in the Zariski density of the rational points of E. It is conjectured that the root number of an elliptic curve E has the same parity as its rank. Assuming this conjecture, it is enough to show that the root number of the fibre of E varies to prove the Zariski density of E(Q). A conditional theorem of Helfgott garanties that the average root number of a non-isotrivial elliptic surface is strictly between -1 et 1. In the case where E has a generic place of multiplicative reduction, the average root number should be zero. This work is conditional to two analytic number theory conjectures : the squarefree conjecture and the Chowla conjecture. The main aim of this Ph.D thesis is to avoid the conjectures used by Helfgott when proving the variation of the root number on non-trivial elliptic surfaces. We manage to drop the squarefree conjecture assumption under some technical hypothesis. We show thus (under the parity conjecture) the density of the rational points on some elliptic surfaces whose coefficients have arbitrary large degree. Blowing up the anticanonical point on a del Pezzo surface of degree 1, one obtains a rational elliptic surface. We show unconditionally the density of the rational points in many cases by means of geometric arguments. We also study the variation of the root number on some isotrivial rational elliptic surfaces and we state the conditions under which it is constant. When it is +1, we deduce examples of non trivial elliptic surfaces whose rational points might not be dense
Jost, Jan Niklas [Verfasser], et Thomas [Akademischer Betreuer] Reichelt. « Mirror Symmetry for Del Pezzo Surfaces / Jan Niklas Jost ; Betreuer : Thomas Reichelt ». Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1227711492/34.
Texte intégralWittenberg, Olivier. « Principe de Hasse pour les surfaces de del Pezzo de degré 4 ». Paris 11, 2005. http://www.theses.fr/2005PA112277.
Texte intégralLet k be a number field and X be a smooth intersection of two quadrics in P^n. The variety X is said to satisfy the Hasse principle if the existence of a k_v-point of X for each place v of k implies the existence of a k-point of X. It is conjectured that (i) X satisfies the Hasse principle if n>=5; (ii) X satisfies the Hasse principle if n=4 and Br(X)/Br(k)=0. The aim of this thesis is to establish conjecture (i) as well as a good deal of conjecture (ii), assuming Schinzels hypothesis and the finiteness of Tate-Shafarevich groups of elliptic curves over number fields
Jost, Jan [Verfasser], et Thomas [Akademischer Betreuer] Reichelt. « Mirror Symmetry for Del Pezzo Surfaces / Jan Niklas Jost ; Betreuer : Thomas Reichelt ». Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1227711492/34.
Texte intégralKaplan, Nathan. « Rational Point Counts for del Pezzo Surfaces over Finite Fields and Coding Theory ». Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10896.
Texte intégralMathematics
Heuberger, Liana. « Deux points de vue sur les variétés de Fano : géométrie du diviseur anticanonique et classification des surfaces à singularités 1/3(1,1) ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066129/document.
Texte intégralThis thesis concerns Fano varieties, which are central objects within the classification of algebraic varieties.The first problem we discuss involves smooth Fano varieties of dimension four. We study the potential singularities of an anticanonical divisor and determine their explicit local expression. As an intermediate step, we show that they are terminal points, that is the singularities which are closest to the smooth case from the point of view of birational geometry. We then show that the latter result generalizes in arbitrary dimension if we suppose that a nonvanishing conjecture of Kawamata holds.The second approach is to examine Fano varieties of smaller dimensions which admit singularities. The objects we consider are log del Pezzo surfaces with 1/3(1,1) points. This is the simplest example of a rigid singularity, that is it remains unchanged under Q-Gorenstein deformations. We give a complete classification of these surfaces, finding 29 families. We also provide a table describing almost all of them as complete intersections in toric varieties. This work belongs to an overarching project that aims at studying mirror symmetry for del Pezzo surfaces with cyclic quotient singularities
Nguyen, Dong Quan Ngoc. « Nonexistence of Rational Points on Certain Varieties ». Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/238653.
Texte intégralHenry-Labordère, Pierre. « Symétries en théorie M ». Paris 7, 2003. http://www.theses.fr/2003PA077234.
Texte intégralKoshelev, Dmitrii. « Nouvelles applications des surfaces rationnelles et surfaces de Kummer généralisées sur des corps finis à la cryptographie à base de couplages et à la théorie des codes BCH ». Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASM001.
Texte intégralThere is well developed theory of so-called toric codes, i.e., algebraic geometry codes on toric varieties over a finite field. Besides ordinary (i.e., split) tori and toric varieties there are non-split ones. Therefore the thesis is dedicated to the study of algebraic geometry codes on the latter
Derenthal, Ulrich. « Geometry of universal torsors ». Doctoral thesis, [S.l.] : [s.n.], 2006. http://webdoc.sub.gwdg.de/diss/2006/derenthal.
Texte intégralÇelik, Türkü Özlüm. « Propriétés géométriques et arithmétiques explicites des courbes ». Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S032/document.
Texte intégralAlgebraic curves are central objects in algebraic geometry. In this thesis, we consider these objects from different angles of algebraic geometry such as computational algebraic geometry and arithmetic geometry. In the first chapter, we study non-hyperelliptic curves of genus g and their Jacobians linked via theta characteristic divisors. Such divisors provide extrinsic geometric properties which allow us to compute theta constants. In the second chapter, we focus on hyperelliptic curves of genus 2 and the associated Kummer surface with a cryptographic motivation. In the third and final chapter, we examine unramified double covers of non-hyperelliptic curves of genus g to obtain information about p-rank
Paulot, Louis. « Théorie M et dualités ». Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00005254.
Texte intégralLin, Chin-Yi, et 林金毅. « On Geometry of Del Pezzo Surfaces ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/33692235893984153443.
Texte intégral國立臺灣大學
數學研究所
102
The thesis in on the geometry of del Pezzo surfaces. Early researches focused on smooth surfaces, while recently surfaces with singularities have been mostly considered. Consequently, in Chapter 2, different types of singularities are first discussed, and then del Pezzo surfaces can be defined formally in Chapter 3. Research on smooth surfaces are also given there. In Chapter 4, we introduce the complement theory developed by Shokurov, and we give some examples of weighted complete intersection in Chapter 5. Chapter 6 is about the relation between Kahler-Einstein metrics and del Pezzo surfaces. In Chapter 7 and Chapter 8, we introduce our research result. We use Riemann-Roch theorem to calculated Euler characteristics, and then give a special type of nonvanishing theorem.
Pirozhkov, Dmitrii. « Admissible subcategories of del Pezzo surfaces ». Thesis, 2020. https://doi.org/10.7916/d8-4wvy-fe69.
Texte intégral« Rational points on del Pezzo surfaces of degree 1 and 2 ». Thesis, 2011. http://hdl.handle.net/1911/70318.
Texte intégralKnecht, Amanda Leigh. « Weak approximation for degree 2del Pezzo surfaces at places of bad reduction ». Thesis, 2007. http://hdl.handle.net/1911/20618.
Texte intégralMaddock, Zachary Alexander. « Del Pezzo surfaces with irregularity and intersection numbers on quotients in geometric invariant theory ». Thesis, 2012. https://doi.org/10.7916/D82B9568.
Texte intégral