Articles de revues sur le sujet « Target binding »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Target binding ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Park, Keunwan, Young-Joon Ko, Prasannavenkatesh Durai, and Cheol-Ho Pan. "Machine learning-based chemical binding similarity using evolutionary relationships of target genes." Nucleic Acids Research 47, no. 20 (2019): e128-e128. http://dx.doi.org/10.1093/nar/gkz743.
Texte intégralCheung, S. H., G. E. Legge, S. T. L. Chung, and B. S. Tjan. "Target-flanker binding releases crowding." Journal of Vision 6, no. 6 (2010): 807. http://dx.doi.org/10.1167/6.6.807.
Texte intégralJOHNSTON, Angus, and Eva VAN DER MAREL. "How Binding are the EU’s ‘Binding’ Renewables Targets?" Cambridge Yearbook of European Legal Studies 18 (August 9, 2016): 176–214. http://dx.doi.org/10.1017/cel.2016.7.
Texte intégralPOOLSAP, UNYANEE, YUKI KATO, KENGO SATO, and TATSUYA AKUTSU. "USING BINDING PROFILES TO PREDICT BINDING SITES OF TARGET RNAs." Journal of Bioinformatics and Computational Biology 09, no. 06 (2011): 697–713. http://dx.doi.org/10.1142/s0219720011005628.
Texte intégralMolina, Daniel Martinez, Rozbeh Jafari, Marina Ignatushchenko, et al. "Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay." Science 341, no. 6141 (2013): 84–87. http://dx.doi.org/10.1126/science.1233606.
Texte intégralBriskin, Daniel, Peter Y. Wang, and David P. Bartel. "The biochemical basis for the cooperative action of microRNAs." Proceedings of the National Academy of Sciences 117, no. 30 (2020): 17764–74. http://dx.doi.org/10.1073/pnas.1920404117.
Texte intégralKUMAR, YOGESH, and FEROZ KHAN. "Detection of aroma compound’s binding mode conformations on anticancer target DNA topoisomerase II." Journal of Medicinal and Aromatic Plant Sciences 40, no. 3 (2018): 40–48. http://dx.doi.org/10.62029/jmaps.v40i3.kumar.
Texte intégralJadhav, Sagar Ashok, Payal Chavan, Supriya Suresh Shete, et al. "In Silico ADMET and Docking Study of Selected Drug Used in Therapy of COVID-19." Journal of Pharmaceutical Technology, Research and Management 10, no. 1 (2022): 47–73. http://dx.doi.org/10.15415/jptrm.2022.101006.
Texte intégralTan, Zhixin Cyrillus, Brian T. Orcutt-Jahns, and Aaron S. Meyer. "A quantitative view of strategies to engineer cell-selective ligand binding." Integrative Biology 13, no. 11 (2021): 269–82. http://dx.doi.org/10.1093/intbio/zyab019.
Texte intégralLipovsek, D. "Adnectins: engineered target-binding protein therapeutics." Protein Engineering Design and Selection 24, no. 1-2 (2010): 3–9. http://dx.doi.org/10.1093/protein/gzq097.
Texte intégralLv, Shuang-Qing, Xin Zeng, Guang-Peng Su, Wen-Feng Du, Yi Li, and Meng-Liang Wen. "Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network." Biomolecules 15, no. 2 (2025): 221. https://doi.org/10.3390/biom15020221.
Texte intégralLiao, Jianbo, Qinyu Wang, Fengxu Wu, and Zunnan Huang. "In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets." Molecules 27, no. 20 (2022): 7103. http://dx.doi.org/10.3390/molecules27207103.
Texte intégralMohebbi, Mohammad, Liang Ding, Russell L. Malmberg, Cory Momany, Khaled Rasheed, and Liming Cai. "Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex." Journal of Bioinformatics and Computational Biology 16, no. 04 (2018): 1850013. http://dx.doi.org/10.1142/s0219720018500130.
Texte intégralLee and Kim. "In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning." Genes 10, no. 11 (2019): 906. http://dx.doi.org/10.3390/genes10110906.
Texte intégralRobers, M. B., R. Friedman-Ohana, K. V. M. Huber, et al. "Quantifying Target Occupancy of Small Molecules Within Living Cells." Annual Review of Biochemistry 89, no. 1 (2020): 557–81. http://dx.doi.org/10.1146/annurev-biochem-011420-092302.
Texte intégralSchulmeyer, Kayley H., Manisha R. Diaz, Thomas B. Bair, et al. "Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF." Journal of Bacteriology 198, no. 18 (2016): 2458–69. http://dx.doi.org/10.1128/jb.00343-16.
Texte intégralBandorowicz-Pikuła, J., M. Danieluk, A. Wrzosek, R. Buś, R. Buchet, and S. Pikuła. "Annexin VI: an intracellular target for ATP." Acta Biochimica Polonica 46, no. 3 (1999): 801–12. http://dx.doi.org/10.18388/abp.1999_4152.
Texte intégralSchmidt, Denis, Magdalena M. Scharf, Dominique Sydow, et al. "Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening." Molecules 26, no. 3 (2021): 629. http://dx.doi.org/10.3390/molecules26030629.
Texte intégralChen, Zihao, Long Hu, Bao-Ting Zhang, et al. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Texte intégralGanotra, Gaurav K., and Rebecca C. Wade. "Prediction of Drug–Target Binding Kinetics by Comparative Binding Energy Analysis." ACS Medicinal Chemistry Letters 9, no. 11 (2018): 1134–39. http://dx.doi.org/10.1021/acsmedchemlett.8b00397.
Texte intégralHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Texte intégralKlimentová, Eva, Václav Hejret, Ján Krčmář, Katarína Grešová, Ilektra-Chara Giassa, and Panagiotis Alexiou. "miRBind: A Deep Learning Method for miRNA Binding Classification." Genes 13, no. 12 (2022): 2323. http://dx.doi.org/10.3390/genes13122323.
Texte intégralSarmoko, Sarmoko, Afif Hariawan Pratama, Nur Amalia Choironi, and Muhammad Salman Fareza. "Bioinformatic Study of the Active Compound of Morusin in Mulberry (Morus alba) against Breast Cancer." Indonesian Journal of Cancer Chemoprevention 14, no. 1 (2023): 60. http://dx.doi.org/10.14499/indonesianjcanchemoprev14iss1pp60-71.
Texte intégralXiong, Li, Junfeng Cao, Yixin Qiu, et al. "Exploring the Mechanism of Aspirin in the Treatment of Kawasaki Disease Based on Molecular Docking and Molecular Dynamics." Evidence-Based Complementary and Alternative Medicine 2022 (August 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/9828518.
Texte intégralKim, Minjee, and Young Bong Kim. "Uncovering Quercetin’s Effects against Influenza A Virus Using Network Pharmacology and Molecular Docking." Processes 9, no. 9 (2021): 1627. http://dx.doi.org/10.3390/pr9091627.
Texte intégralSneha, Nandeshwar* Sapan Shah Rida Saiyad Nikita Gaikwad Pooja Wankhade. "In-Silico Evaluation of Flavone Derivatives for Cardioprotective Effects: A Comparative Molecular Docking Approach." International Journal of Pharmaceutical Sciences 3, no. 3 (2025): 2543–56. https://doi.org/10.5281/zenodo.15087478.
Texte intégralJulio, Ashley R., and Keriann M. Backus. "New approaches to target RNA binding proteins." Current Opinion in Chemical Biology 62 (June 2021): 13–23. http://dx.doi.org/10.1016/j.cbpa.2020.12.006.
Texte intégralKadonosono, Tetsuya. "A smart design of target-binding molecules." Japanese Journal of Pesticide Science 46, no. 2 (2021): 168–72. http://dx.doi.org/10.1584/jpestics.w21-33.
Texte intégralHolmberg, Eric, Kazuo Maruyama, Stephen Kennel, et al. "Target-Specific Binding of Immunoliposomes in Vivo." Journal of Liposome Research 1, no. 4 (1990): 393–406. http://dx.doi.org/10.3109/08982109009036003.
Texte intégralWu, Yung-Peng, Chee Ying Chew, Tian-Neng Li, et al. "Target-activated streptavidin–biotin controlled binding probe." Chemical Science 9, no. 3 (2018): 770–76. http://dx.doi.org/10.1039/c7sc04014h.
Texte intégralGuhaThakurta, D., and G. D. Stormo. "Identifying target sites for cooperatively binding factors." Bioinformatics 17, no. 7 (2001): 608–21. http://dx.doi.org/10.1093/bioinformatics/17.7.608.
Texte intégralÖztürk, Hakime, Arzucan Özgür, and Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34, no. 17 (2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Texte intégralde la Rosa, Mario A. Diaz, Elena F. Koslover, Peter J. Mulligan, and Andrew J. Spakowitz. "Target-Site Search of DNA-Binding Proteins." Biophysical Journal 98, no. 3 (2010): 221a. http://dx.doi.org/10.1016/j.bpj.2009.12.1194.
Texte intégralOğul, Hasan, Sinan U. Umu, Y. Yener Tuncel, and Mahinur S. Akkaya. "A probabilistic approach to microRNA-target binding." Biochemical and Biophysical Research Communications 413, no. 1 (2011): 111–15. http://dx.doi.org/10.1016/j.bbrc.2011.08.065.
Texte intégralLoach, Daniel, and Paloma Marí-Beffa. "Post-target inhibition: A temporal binding mechanism?" Visual Cognition 10, no. 5 (2003): 513–26. http://dx.doi.org/10.1080/13506280244000203.
Texte intégralDrwal, Malgorzata N., Guillaume Bret, and Esther Kellenberger. "Multi-target Fragments Display Versatile Binding Modes." Molecular Informatics 36, no. 10 (2017): 1700042. http://dx.doi.org/10.1002/minf.201700042.
Texte intégralSmith, F. Donelson, Robert H. Pierce, Thomas Thisted, and Edward H. van der Horst. "Conditionally Active, pH-Sensitive Immunoregulatory Antibodies Targeting VISTA and CTLA-4 Lead an Emerging Class of Cancer Therapeutics." Antibodies 12, no. 3 (2023): 55. http://dx.doi.org/10.3390/antib12030055.
Texte intégralYim, Hyung-Soon, and Jae-Hak Lee. "Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites." Journal of Marine Bioscience and Biotechnology 7, no. 2 (2015): 35–41. http://dx.doi.org/10.15433/ksmb.2015.7.2.035.
Texte intégralRe, Suyong, Hiraku Oshima, Kento Kasahara, Motoshi Kamiya, and Yuji Sugita. "Encounter complexes and hidden poses of kinase-inhibitor binding on the free-energy landscape." Proceedings of the National Academy of Sciences 116, no. 37 (2019): 18404–9. http://dx.doi.org/10.1073/pnas.1904707116.
Texte intégralEriksson, Mikael, Guenther Leitz, Erik Fällman, et al. "Inhibitory Receptors Alter Natural Killer Cell Interactions with Target Cells Yet Allow Simultaneous Killing of Susceptible Targets." Journal of Experimental Medicine 190, no. 7 (1999): 1005–12. http://dx.doi.org/10.1084/jem.190.7.1005.
Texte intégralSoller, Matthias, Min Li, and Irmgard U. Haussmann. "Determinants of ELAV gene-specific regulation." Biochemical Society Transactions 38, no. 4 (2010): 1122–24. http://dx.doi.org/10.1042/bst0381122.
Texte intégralTalukder, Amlan, Xiaoman Li, and Haiyan Hu. "Position-wise binding preference is important for miRNA target site prediction." Bioinformatics 36, no. 12 (2020): 3680–86. http://dx.doi.org/10.1093/bioinformatics/btaa195.
Texte intégralJhanwar-Uniyal, Meena, Sabrina L. Zeller, Eris Spirollari, Mohan Das, Simon J. Hanft, and Chirag D. Gandhi. "Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets." Cells 13, no. 5 (2024): 409. http://dx.doi.org/10.3390/cells13050409.
Texte intégralZhou, Delong, Sonia Couture, Michelle S. Scott, and Sherif Abou Elela. "RBFOX2 alters splicing outcome in distinct binding modes with multiple protein partners." Nucleic Acids Research 49, no. 14 (2021): 8370–83. http://dx.doi.org/10.1093/nar/gkab595.
Texte intégralTrezza, Alfonso, Anna Visibelli, Bianca Roncaglia, et al. "Unveiling Dynamic Hotspots in Protein–Ligand Binding: Accelerating Target and Drug Discovery Approaches." International Journal of Molecular Sciences 26, no. 9 (2025): 3971. https://doi.org/10.3390/ijms26093971.
Texte intégralFaquetti, M. L., F. Grisoni, P. Schneider, G. Schneider, and A. M. Burden. "POS0091 OFF-TARGET PROFILING OF JANUS KINASE (JAK) INHIBITORS IN RHEUMATOID ARTHRITIS: A COMPUTER-BASED APPROACH FOR DRUG SAFETY STUDIES AND REPURPOSING." Annals of the Rheumatic Diseases 80, Suppl 1 (2021): 255.2–255. http://dx.doi.org/10.1136/annrheumdis-2021-eular.982.
Texte intégralLi, Shiyuan, Duyu Chen, Qingtong Zhou, et al. "A General Chemiluminescence Strategy for Measuring Aptamer–Target Binding and Target Concentration." Analytical Chemistry 86, no. 11 (2014): 5559–66. http://dx.doi.org/10.1021/ac501061c.
Texte intégralGijsen, Matthias, Erwin Dreesen, Ruth Van Daele, et al. "Pharmacokinetic/Pharmacodynamic Target Attainment Based on Measured versus Predicted Unbound Ceftriaxone Concentrations in Critically Ill Patients with Pneumonia: An Observational Cohort Study." Antibiotics 10, no. 5 (2021): 557. http://dx.doi.org/10.3390/antibiotics10050557.
Texte intégralShlyakhtenko, Luda S., Alexander Y. Lushnikov, Atsushi Miyagi, and Yuri L. Lyubchenko. "Specificity of Binding of Single-Stranded DNA-Binding Protein to Its Target." Biochemistry 51, no. 7 (2012): 1500–1509. http://dx.doi.org/10.1021/bi201863z.
Texte intégralBrokx, Richard D., Maria M. Lopez, Hans J. Vogel, and George I. Makhatadze. "Energetics of Target Peptide Binding by Calmodulin Reveals Different Modes of Binding." Journal of Biological Chemistry 276, no. 17 (2001): 14083–91. http://dx.doi.org/10.1074/jbc.m011026200.
Texte intégral