Littérature scientifique sur le sujet « Thermoplastic composite »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Thermoplastic composite ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Thermoplastic composite"
Periasamy, Kailashbalan, Everson Kandare, Raj Das, Maryam Darouie et Akbar A. Khatibi. « Interfacial Engineering Methods in Thermoplastic Composites : An Overview ». Polymers 15, no 2 (12 janvier 2023) : 415. http://dx.doi.org/10.3390/polym15020415.
Texte intégralBona, Anna. « Theoretical and Experimental Review of Applied Mechanical Tests for Carbon Composites with Thermoplastic Polymer Matrix ». Transactions on Aerospace Research 2019, no 4 (1 décembre 2019) : 55–65. http://dx.doi.org/10.2478/tar-2019-0023.
Texte intégralMat Rasat, Mohd Sukhairi, Razak Wahab, Amran Shafie, Ahmad Mohd Yunus AG., Mahani Yusoff, Sitti Fatimah Mhd. Ramle et Zulhisyam A.K. « Effect of Wood-Fiber Geometry Size on Mechanical Properties of Wood-Fiber from Neolamarckia Cadamba Species Reinforced Polypropylene Composites ». Journal of Tropical Resources and Sustainable Science (JTRSS) 1, no 1 (15 août 2021) : 42–50. http://dx.doi.org/10.47253/jtrss.v1i1.669.
Texte intégralRodriguez, Patrick A., et Donald W. Radford. « A DMA-Based Approach to Quality Evaluation of Digitally Manufactured Continuous Fiber-Reinforced Composites from Thermoplastic Commingled Tow ». Journal of Composites Science 6, no 2 (18 février 2022) : 61. http://dx.doi.org/10.3390/jcs6020061.
Texte intégralKhamidullaevna, Alimova Zebo, et Dauletbaeva Hulkar Ilkhomzhonovna. « RESEARCH OF POLYMER COMPOSITE MATERIALS BASED ON THERMOPLASTICS ». European International Journal of Multidisciplinary Research and Management Studies 02, no 06 (1 juin 2022) : 170–73. http://dx.doi.org/10.55640/eijmrms-02-06-33.
Texte intégralPerrin, Henri, Masoud Bodaghi, Vincent Berthé, Sébastien Klein et Régis Vaudemont. « On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12 ». Materials 16, no 2 (10 janvier 2023) : 691. http://dx.doi.org/10.3390/ma16020691.
Texte intégralMihu, Georgel, Sebastian-Marian Draghici, Vasile Bria, Adrian Circiumaru et Iulian-Gabriel Birsan. « Mechanical Properties of Some Epoxy-PMMA Blends ». Materiale Plastice 58, no 2 (5 juillet 2021) : 220–28. http://dx.doi.org/10.37358/mp.21.2.5494.
Texte intégralÖztekin, Hilal Filiz, Mustafa Gür, Serkan Erdem et Mete Onur Kaman. « Effect of fiber type and thickness on mechanical behavior of thermoplastic composite plates reinforced with fabric plies ». Journal of Structural Engineering & ; Applied Mechanics 5, no 3 (30 septembre 2022) : 161–69. http://dx.doi.org/10.31462/jseam.2022.03161169.
Texte intégralVellguth, Natalie, Tanja Rudeck, Madina Shamsuyeva, Franz Renz et Hans Josef Endres. « Thermal Stability of Natural Fibers via Thermoset Coating for Application in Engineering Thermoplastics ». Key Engineering Materials 809 (juin 2019) : 433–38. http://dx.doi.org/10.4028/www.scientific.net/kem.809.433.
Texte intégralWongpreedee, Thapanee, et Nanthaya Kengkhetkit. « Effect of Rice Flour Types on the Properties of Nonwoven Pineapple Leaf Fiber and Thermoplastic Rice Starch Composites ». Key Engineering Materials 904 (22 novembre 2021) : 221–25. http://dx.doi.org/10.4028/www.scientific.net/kem.904.221.
Texte intégralThèses sur le sujet "Thermoplastic composite"
Li, Min-Chung. « Thermoplastic composite consolidation ». Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40036.
Texte intégralPh. D.
Wu, Xiang. « Thermoforming continuous fiber reinforced thermoplastic composites ». Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/9383.
Texte intégralYang, Heechun. « Modeling the processing science of thermoplastic composite tow prepreg materials ». Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17217.
Texte intégralNorpoth, Lawrence R. « Processing parameters for the consolidation of thermoplastic composites ». Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/19099.
Texte intégralABDU, ALINE AMARAL QUINTELLA. « ELONGATIONAL BEHAVIOR OF COMPOSITE THERMOPLASTIC MATERIALS ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11520@1.
Texte intégralOs materiais termoplásticos compósitos, tais como o polipropileno reforçado com fibras de vidro curtas, são usados cada vez mais em diversos setores industriais. O reforço da fibra de vidro é uma forma utilizada para melhorar as propriedades mecânicas dos termoplásticos, devido ao elevado módulo das fibras e à melhor adesão entre as fibras e a matriz polimérica. No entanto, há poucas informações referentes às propriedades desses fluidos na literatura. No presente trabalho, um estudo das propriedades cisalhantes e elongacionais do polipropileno reforçado com fibras de vidros curtas é apresentado. As viscosidades cisalhantes e elongacionais foram obtidas em um reômetro capilar através da medição da queda de pressão na entrada convergente de um capilar axissimétrico. Utilizaram-se duas geometrias diferentes na entrada do capilar, para a obtenção dos dados experimentais: as geometrias semi-hiperbólica convergente e cônica convergente. Neste último, a viscosidade elongacional foi obtida a partir da queda de pressão na entrada, utilizando as análises de Cogswell e Binding. Simulações numéricas foram realizadas com o objetivo de investigar o comportamento do polipropileno em um processo de extrusão. As equações de conservação de massa e quantidade de movimento foram resolvidas utilizando o método dos elementos finitos a partir do programa comercial Polyflow (Ansys). Para modelar o comportamento da mecânico viscoelástico do polipropileno foram utilizados os modelos de Maxwell, Oldroyd-B e Phan-Thien Tanner (PTT), no entanto a comparação entre os resultados numéricos e os experimentais obtidos no reômetro capilar não apresentaram concordância satisfatória.
Composite thermoplastic materials, like glass fiber reforced polypropropylene, are used increasingly in several industries. In particular, glass fiber reinforcement is used to improve the mechanical properties of thermoplastics, due to the high fiber modulous and to the better adesion between the fibers and the polymeric matrix. However, few data of material properties of these fluids are avaiable in the literature. In this work, a study of shear and elongational properties of a commercial short glass fiber reinforced polypropylene is presented. The shear and elongational viscosities were obtained using the pressure drop measured at a capillary rheometer, with axisymmetric converging dies. Two different die geometries were used: semihyperbolically convergent dies and conical convergent dies. In the last case, the elongational viscosity was obtained using the Cogswell and Binding analysis. Numerical simulations were also performed, to investigate the flow field through the extrusion die process, and to evaluate the pressure drop and elongational viscosity. The conservation equations of mass and momentum were solved via the finite element method, using the commercial program POLYFLOW (Ansys). The Maxwell, Oldroyd B and Phan Thien-Tanner (PTT) constitutive equations were used to model the viscoelastic mechanical behavior of Polypropylene, but the comparison between numerical results and experimental data obtained from the capillary rheometer did not show good agreement.
Sandusky, Donald Allan. « Fabrication of thermoplastic polymer composite ribbon ». W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539616840.
Texte intégralSong, Xiaolan. « Modeling of Thermoplastic Composite Filament Winding ». Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35370.
Texte intégralThermoplastic composite filament winding is an on-line consolidation process, where the composite experiences a complex temperature history and undergoes a number of temperature history affected microstructural changes that influence the structure's subsequent properties. These changes include melting, crystallization, void formation, degradation and consolidation. In the present study, models of the thermoplastic filament winding process were developed to identify and understand the relationships between process variables and the structure quality. These include models that describe the heat transfer, consolidation and crystallization processes that occur during fabrication of a filament wound composites structure.
A comprehensive thermal model of the thermoplastic filament winding process was developed to calculate the temperature profiles in the composite substrate and the towpreg temperature before entering the nippoint. A two-dimensional finite element heat transfer analysis for the composite-mandrel assembly was formulated in the polar coordinate system, which facilitates the description of the geometry and the boundary conditions. A four-node 'sector element' was used to describe the domain of interest. Sector elements were selected to give a better representation of the curved boundary shape which should improve accuracy with fewer elements compared to a finite element solution in the Cartesian-coordinate system. Hence the computational cost will be reduced. The second thermal analysis was a two-dimensional, Cartesian coordinate, finite element model of the towpreg as it enters the nippoint. The results show that the calculated temperature distribution in the composite substrate compared well with temperature data measured during winding and consolidation. The analysis also agrees with the experimental observation that the melt region is formed on the surface of the incoming towpreg in the nippoint and not on the substrate.
Incorporated with the heat transfer analysis were the consolidation and crystallization models. These models were used to calculate the degree of interply bonding and the crystallinity achieved during composite manufacture. Bonding and crystallinity developments during the winding process were investigated using the model. It is concluded that lower winding speed, higher hot-air heater nozzle temperature, and higher substrate preheating temperature yield higher nippoint temperature, better consolidation and a higher degree of crystallization. Complete consolidation and higher matrix crystallization will result in higher interlaminar strength of the wound composite structure.
Master of Science
Rohm, Kristen Nicole. « Thermoplastic Polyurethane : A Complex Composite System ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1625604511143102.
Texte intégralTalbot, Edith. « Manufacturing process modelling of thermoplastic composite resistance welding ». Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=83934.
Texte intégralPeterson, Nels Royal. « Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska's Kenai Peninsula ». Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Summer2008/N_Peterson_060508.pdf.
Texte intégralLivres sur le sujet "Thermoplastic composite"
Dara, Philip H. Thermoplastic matrix composite processing model. Blacksburg, Va : Virginia Polytechnic Institute and State University, 1985.
Trouver le texte intégralNewaz, GM, dir. Advances in Thermoplastic Matrix Composite Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 : ASTM International, 1989. http://dx.doi.org/10.1520/stp1044-eb.
Texte intégralRopers, Steffen. Bending Behavior of Thermoplastic Composite Sheets. Wiesbaden : Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8.
Texte intégral1954-, Newaz Golam M., et ASTM Committee D-30 on High Modulus Fibers and Their Composites., dir. Advances in thermoplastic matrix composite materials. Philadelphia, PA : ASTM, 1989.
Trouver le texte intégralKo, Henry Y. S. Reconsolidation pressure effects when healing delaminated thermoplastic composite structures. [Downsview, Ont.] : Dept. of Aerospace Studies and Engineering, 1989.
Trouver le texte intégralSun, C. T. Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite. Hampton, Va : Langley Research Center, 1988.
Trouver le texte intégralInternational Conference on Woodfiber-Plastic Composites (6th 2001 Madison, Wis.). Sixth International Conference on Woodfiber-Plastic Composites : May 15-16, 2001, the Madison Concourse Hotel, Madison, Wisconsin. Madison, WI : Forest Products Society, 2002.
Trouver le texte intégralInternational Conference on Woodfiber-Plastic Composites (5th 1999 Madison, Wis.). Fifth International Conference on Woodfiber-Plastic Composites : May 26-27, 1999, the Madison Concourse Hotel, Madison, Wisconsin. Madison, Wis : Forest Products Society, 1999.
Trouver le texte intégralT, Sun C. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression. [Washington, D.C. ? : National Aeronautics and Space Administration, 1990.
Trouver le texte intégralSun, C. T. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression. [Washington, D.C. ? : National Aeronautics and Space Administration, 1990.
Trouver le texte intégralChapitres de livres sur le sujet "Thermoplastic composite"
Pilato, Louis A., et Michael J. Michno. « Thermoplastic Composites ». Dans Advanced Composite Materials, 144–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-35356-1_10.
Texte intégralRopers, Steffen. « Thermoplastic Prepregs ». Dans Bending Behavior of Thermoplastic Composite Sheets, 5–20. Wiesbaden : Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_2.
Texte intégralLoos, Alfred C., et Min-Chung Li. « Consolidation during Thermoplastic Composite Processing ». Dans Processing of Composites, 208–38. München : Carl Hanser Verlag GmbH & ; Co. KG, 2000. http://dx.doi.org/10.3139/9783446401778.007.
Texte intégralRegnier, Gilles, et Steven Le Corre. « Modeling of Thermoplastic Welding ». Dans Heat Transfer in Polymer Composite Materials, 235–68. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119116288.ch8.
Texte intégralRopers, Steffen. « Draping Simulation of Thermoplastic Prepregs ». Dans Bending Behavior of Thermoplastic Composite Sheets, 21–29. Wiesbaden : Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_3.
Texte intégralThomason, J. L., et A. A. van Rooyen. « The Transcrystallised Interphase in Thermoplastic Composites ». Dans Controlled Interphases in Composite Materials, 423–30. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_41.
Texte intégralSingh, Narinder, Rupinder Singh et I. P. S. Ahuja. « Metal Matrix Composite from Thermoplastic Waste ». Dans Additive Manufacturing, 187–210. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. : CRC Press, 2018. http://dx.doi.org/10.1201/b22179-5.
Texte intégralKhan, Ashraf Nawaz, Ganesh Jogur et R. Alagirusamy. « Flexible Towpreg Structure and Composite Properties ». Dans Flexible Towpregs and Their Thermoplastic Composites, 303–40. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003049715-11.
Texte intégralRopers, Steffen. « Bending Characterization of Textile Composites ». Dans Bending Behavior of Thermoplastic Composite Sheets, 31–59. Wiesbaden : Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_4.
Texte intégralRopers, Steffen. « Introduction ». Dans Bending Behavior of Thermoplastic Composite Sheets, 1–4. Wiesbaden : Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_1.
Texte intégralActes de conférences sur le sujet "Thermoplastic composite"
Tijs, B., A. Turon et C. Bisagni. « Failure of Thermoplastic Composite Welded Joints ». Dans VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.043.
Texte intégralEchtermeyer, Andreas, et Bart Steuten. « Thermoplastic Composite Riser Guidance Note ». Dans Offshore Technology Conference. Offshore Technology Conference, 2013. http://dx.doi.org/10.4043/24095-ms.
Texte intégralWilkins, Jonathan. « Qualification of Thermoplastic Composite Pipes ». Dans ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77014.
Texte intégralHaldar, Amit Kumar, Satnam Singh et Prince. « Vibration Characteristics of Thermoplastic Composite ». Dans REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION : Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Institute of Physics, 2011. http://dx.doi.org/10.1063/1.3669958.
Texte intégralSebaey, Tamer A., et Noel O’Dowd. « On the Manufacturing Defects of Thermoplastic Carbon/Epoxy Composites Manufactured by Automated Tape Placement ». Dans ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23144.
Texte intégralOtheguy, M., A. G. Gibson et A. M. Robinson. « Towards Recyclable Composite Craft : Fusion Bonded Thermoplastic Composite T-Joints ». Dans Marine & Offshore Composites. RINA, 2010. http://dx.doi.org/10.3940/rina.moc10cd.2010.04.
Texte intégralKawakubo, Youichi, Masaki Nagata, Takashi Yokoyama, Yoshitaka Hayashi et Masahiro Arai. « Tribological Characteristics of Carbon Nanotube Thermoplastic Resin Composites ». Dans ASME/STLE 2009 International Joint Tribology Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/ijtc2009-15083.
Texte intégralCasula, G., F. Lenzi, C. Vitiello, Alberto D’Amore, Domenico Acierno et Luigi Grassia. « THERMOPLASTIC COMPOSITE MATERIALS FOR AEROSPACE APPLICATIONS ». Dans IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989032.
Texte intégralArakawa, Yoji. « Applying Thermoplastic Composite to Inflatable Structure ». Dans 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-i.1.07.
Texte intégralBarrett, Alan J., Murry C. Kaufman et Michael J. Larson. « Development of a Thermoplastic Composite Kneebolster ». Dans International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1991. http://dx.doi.org/10.4271/910405.
Texte intégralRapports d'organisations sur le sujet "Thermoplastic composite"
Matsen, Marc R. Energy Efficient Thermoplastic Composite Manufacturing. Office of Scientific and Technical Information (OSTI), avril 2020. http://dx.doi.org/10.2172/1609100.
Texte intégralSilverman, Lee, Kaushik Mallick, Jared Stonecash et Leonard Poveromo. Thermoplastic Composite Compressed Gas Storage (CGS) Tanks. Office of Scientific and Technical Information (OSTI), octobre 2019. http://dx.doi.org/10.2172/1568818.
Texte intégralMallick, Kaushik, Don Radford, Nate Bachman, David Snowberg, Michael Stewart et W. Scott Carron. Vertical Axis Wind Turbine (VAWT) with Thermoplastic Composite Blades. Office of Scientific and Technical Information (OSTI), novembre 2019. http://dx.doi.org/10.2172/1650138.
Texte intégralAl-Chaar, Ghassan, Steven Sweeney, Richard Lampo et Marion Banko. Full-scale testing of thermoplastic composite I-Beams for bridges. Construction Engineering Research Laboratory (U.S.), juin 2017. http://dx.doi.org/10.21079/11681/22641.
Texte intégralSnowberg, David, Derek Berry, Dana Swan, Zhang Mingfu, Steve Nolet, Douglas Adams, Johnathan Goodsell, Dayakar Penumadu et Aaron Stebner. IACMI Project 4.2 : Thermoplastic Composite Development for Wind Turbine Blades. Office of Scientific and Technical Information (OSTI), décembre 2021. http://dx.doi.org/10.2172/1834393.
Texte intégralLampo, Richard G., Barry K. Myers, Karl Palutke et Darryl M. Butler. Remote Performance Monitoring of a Thermoplastic Composite Bridge at Camp Mackall, NC. Fort Belvoir, VA : Defense Technical Information Center, novembre 2011. http://dx.doi.org/10.21236/ada576173.
Texte intégralKunc, Vlastimil, Chad E. Duty, John M. Lindahl et Ahmed A. Hassen. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling. Office of Scientific and Technical Information (OSTI), août 2017. http://dx.doi.org/10.2172/1410928.
Texte intégralNaus, Dan J., James Corum, Lynn B. Klett, Mike Davenport, Rick Battiste et Jr ,. William A. Simpson. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite. Office of Scientific and Technical Information (OSTI), avril 2006. http://dx.doi.org/10.2172/930728.
Texte intégralNguyen, Ba Nghiep, Xiaoshi Jin, Jin Wang, Vlastimil Kunc et Charles L. Tucker III. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures. Office of Scientific and Technical Information (OSTI), février 2012. http://dx.doi.org/10.2172/1035733.
Texte intégralMuehl, James H., Andrzej M. Krzysik et Poo Chow. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin. Madison, WI : U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2004. http://dx.doi.org/10.2737/fpl-rn-294.
Texte intégral