Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Thermoresponsivity.

Articles de revues sur le sujet « Thermoresponsivity »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 40 meilleurs articles de revues pour votre recherche sur le sujet « Thermoresponsivity ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pineda-Contreras, Beatriz A., Holger Schmalz, and Seema Agarwal. "pH dependent thermoresponsive behavior of acrylamide–acrylonitrile UCST-type copolymers in aqueous media." Polymer Chemistry 7, no. 10 (2016): 1979–86. http://dx.doi.org/10.1039/c6py00162a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Yinwen, Huilong Guo, Yunfei Zhang, et al. "Pseudo-graft polymer based on adamantyl-terminated poly(oligo(ethylene glycol) methacrylate) and homopolymer with cyclodextrin as pendant: its thermoresponsivity through polymeric self-assembly and host–guest inclusion complexation." RSC Adv. 4, no. 34 (2014): 17768–79. http://dx.doi.org/10.1039/c3ra47861k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Amemori, Shogo, Kazuya Iseda, Shizuka Anan, Toshikazu Ono, Kenta Kokado, and Kazuki Sada. "Thermoresponsivity of polymer solution derived from a self-attractive urea unit and a self-repulsive lipophilic ion unit." Polymer Chemistry 8, no. 26 (2017): 3921–25. http://dx.doi.org/10.1039/c7py00591a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Hongcan, Jian Zhang, Wenxue Dai, and Youliang Zhao. "Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s with tunable LCST and UCST behaviors." Polymer Chemistry 8, no. 37 (2017): 5749–60. http://dx.doi.org/10.1039/c7py01351e.

Texte intégral
Résumé :
Multi-responsive N-substituted poly(amido thioether) copolymers synthesized by one-pot amine–thiol–acrylate polyaddition could exhibit composition-dependent and stimuli-triggered single or double thermoresponsivity.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fischer, Thorsten, Dan E. Demco, Radu Fechete, Martin Möller, and Smriti Singh. "Poly(vinylamine-co-N-isopropylacrylamide) linear polymer and hydrogels with tuned thermoresponsivity." Soft Matter 16, no. 28 (2020): 6549–62. http://dx.doi.org/10.1039/d0sm00408a.

Texte intégral
Résumé :
Poly(vinylamine-co-N-isopropylacrylamide) linear polymers and hydrogels with tuned thermoresponsivity have been synthetized. They morphology and chain dynamics where investigated by rheology and <sup>1</sup>H NMR spectroscopy, relaxometry and diffusometry.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cazares-Cortes, Esther, Benjamin C. Baker, Kana Nishimori, Makoto Ouchi, and François Tournilhac. "Polymethacrylic Acid Shows Thermoresponsivity in an Organic Solvent." Macromolecules 52, no. 15 (2019): 5995–6004. http://dx.doi.org/10.1021/acs.macromol.9b00412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Liu, Fangyao, and Seema Agarwal. "Thermoresponsive Gold Nanoparticles with Positive UCST-Type Thermoresponsivity." Macromolecular Chemistry and Physics 216, no. 4 (2014): 460–65. http://dx.doi.org/10.1002/macp.201400497.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Marsili, Lorenzo, Michele Dal Bo, Federico Berti, and Giuseppe Toffoli. "Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System." Pharmaceutics 13, no. 11 (2021): 1876. http://dx.doi.org/10.3390/pharmaceutics13111876.

Texte intégral
Résumé :
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Burova, Tatiana V., Valerij Y. Grinberg, Natalia V. Grinberg, et al. "Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions." Macromolecules 51, no. 20 (2018): 7964–73. http://dx.doi.org/10.1021/acs.macromol.8b01621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ghosh, Partha S., and Andrew D. Hamilton. "Supramolecular Dendrimers: Convenient Synthesis by Programmed Self-Assembly and Tunable Thermoresponsivity." Chemistry - A European Journal 18, no. 8 (2012): 2361–65. http://dx.doi.org/10.1002/chem.201103051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Chang, Xiaohua, Hailiang Mao, Guorong Shan, Yongzhong Bao, and Pengju Pan. "Tuning the Thermoresponsivity of Amphiphilic Copolymers via Stereocomplex Crystallization of Hydrophobic Blocks." ACS Macro Letters 8, no. 4 (2019): 357–62. http://dx.doi.org/10.1021/acsmacrolett.9b00125.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Congdon, Thomas, Charline Wilmet, Rebecca Williams, Julia Polt, Mary Lilliman, and Matthew I. Gibson. "Diversely functionalised carbohydrate-centered oligomers and polymers. Thermoresponsivity, lectin binding and degradability." European Polymer Journal 62 (January 2015): 352–62. http://dx.doi.org/10.1016/j.eurpolymj.2014.06.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

MOTYL, MAGDALENA, DOMINIK DROZD, KAMIL KAMINSKI, et al. "Hydroxypropylcellulose-graft-poly(N-isopropylacrylamide) — novel water-soluble copolymer with double thermoresponsivity." Polimery 58, no. 9 (2013): 696–702. http://dx.doi.org/10.14314/polimery.2013.696.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zehm, Daniel, Antje Lieske, and Andrea Stoll. "On the Thermoresponsivity and Scalability of N , N ‐Dimethylacrylamide Modified NIPAM Microgels." Macromolecular Chemistry and Physics 221, no. 8 (2020): 2000018. http://dx.doi.org/10.1002/macp.202000018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chen, Hailong, Yang Yang, Yizhan Wang, and Lixin Wu. "Synthesis, Structural Characterization, and Thermoresponsivity of Hybrid Supramolecular Dendrimers Bearing a Polyoxometalate Core." Chemistry - A European Journal 19, no. 33 (2013): 11051–61. http://dx.doi.org/10.1002/chem.201300289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Grinberg, Valerij Y., Tatiana V. Burova, Natalia V. Grinberg, Vladimir S. Papkov, Alexander S. Dubovik, and Alexei R. Khokhlov. "Salt-Induced Thermoresponsivity of Cross-Linked Polymethoxyethylaminophosphazene Hydrogels: Energetics of the Volume Phase Transition." Journal of Physical Chemistry B 122, no. 6 (2018): 1981–91. http://dx.doi.org/10.1021/acs.jpcb.7b11288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Rancan, Fiorenza, Mazdak Asadian-Birjand, Serap Dogan, et al. "Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels." Journal of Controlled Release 228 (April 2016): 159–69. http://dx.doi.org/10.1016/j.jconrel.2016.02.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Liu, Wei, Xiaoyuan Zhang, Gang Wei, and Zhiqiang Su. "Reduced Graphene Oxide-Based Double Network Polymeric Hydrogels for Pressure and Temperature Sensing." Sensors 18, no. 9 (2018): 3162. http://dx.doi.org/10.3390/s18093162.

Texte intégral
Résumé :
We demonstrate the fabrication of novel reduced graphene oxide (rGO)-based double network (DN) hydrogels through the polymerization of poly(N-isopropylacrylamide) (PNIPAm) and carboxymethyl chitosan (CMC). The facile synthesis of DN hydrogels includes the reduction of graphene oxide (GO) by CMC, and the subsequent polymerization of PNIPAm. The presence of rGO in the fabricated PNIPAm/CMC/rGO DN hydrogels enhances the compressibility and flexibility of hydrogels with respect to pure PNIPAm hydrogels, and they exhibit favorable thermoresponsivity, compressibility, and conductivity. The created h
Styles APA, Harvard, Vancouver, ISO, etc.
19

Yoshida, Eri, and Satoshi Kuwayama. "Reversible Control of Primary and Secondary Self-Assembly of Poly(4-allyloxystyrene)-Block-Polystyrene." Research Letters in Physical Chemistry 2009 (June 29, 2009): 1–5. http://dx.doi.org/10.1155/2009/146849.

Texte intégral
Résumé :
The reversible control of primary and secondary self-assemblies was attained using a poly(4-allyloxystyrene)-block-polystyrene diblock copolymer (PASt--PSt) through variations in temperature. The copolymer showed no self-assembly in cyclohexane over and existed as a unimer with a 37.1 nm hydrodynamic diameter. When the temperature was lowered to , the copolymer formed micelles with 269.9 nm by the primary self-assembly. As the result of further lowering the temperature to , the secondary self-assembly of the micelles occurred to produce ca. 2975.9 nm aggregates. The aggregates were dissociated
Styles APA, Harvard, Vancouver, ISO, etc.
20

Day, Daniel M., and Lian R. Hutchings. "The self-assembly and thermoresponsivity of poly(isoprene-b-methyl methacrylate) copolymers in non-polar solvents." European Polymer Journal 156 (August 2021): 110631. http://dx.doi.org/10.1016/j.eurpolymj.2021.110631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rosi, Benedetta Petra, Letizia Tavagnacco, Lucia Comez, et al. "Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior." Journal of Colloid and Interface Science 604 (December 2021): 705–18. http://dx.doi.org/10.1016/j.jcis.2021.07.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Jiménez, Zulma A., and Ryo Yoshida. "Temperature Driven Self-Assembly of a Zwitterionic Block Copolymer That Exhibits Triple Thermoresponsivity and pH Sensitivity." Macromolecules 48, no. 13 (2015): 4599–606. http://dx.doi.org/10.1021/acs.macromol.5b00769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Arotçaréna, Michel, Bettina Heise, Sultana Ishaya, and André Laschewsky. "Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity." Journal of the American Chemical Society 124, no. 14 (2002): 3787–93. http://dx.doi.org/10.1021/ja012167d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Wu, Gang, Si-Chong Chen, Qi Zhan, and Yu-Zhong Wang. "Well-Defined Amphiphilic Biodegradable Comb-Like Graft Copolymers: Their Unique Architecture-Determined LCST and UCST Thermoresponsivity." Macromolecules 44, no. 4 (2011): 999–1008. http://dx.doi.org/10.1021/ma102588k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhu, Xiaomin, Jian Zhang, Cheng Miao, Siyu Li, and Youliang Zhao. "Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB)mC miktobrush-coil terpolymers." Polymer Chemistry 11, no. 17 (2020): 3003–17. http://dx.doi.org/10.1039/d0py00245c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Tang, Yu-Hang, Zhen Li, Xuejin Li, Mingge Deng, and George Em Karniadakis. "Non-Equilibrium Dynamics of Vesicles and Micelles by Self-Assembly of Block Copolymers with Double Thermoresponsivity." Macromolecules 49, no. 7 (2016): 2895–903. http://dx.doi.org/10.1021/acs.macromol.6b00365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lee, Hau-Nan, Zhifeng Bai, Nakisha Newell, and Timothy P. Lodge. "Micelle/Inverse Micelle Self-Assembly of a PEO−PNIPAm Block Copolymer in Ionic Liquids with Double Thermoresponsivity." Macromolecules 43, no. 22 (2010): 9522–28. http://dx.doi.org/10.1021/ma1019279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Chanthaset, Nalinthip, Yoshikazu Takahashi, Yoshiaki Haramiishi, Mitsuru Akashi, and Hiroharu Ajiro. "Control of thermoresponsivity of biocompatible poly(trimethylene carbonate) with direct introduction of oligo(ethylene glycol) under various circumstances." Journal of Polymer Science Part A: Polymer Chemistry 55, no. 20 (2017): 3466–74. http://dx.doi.org/10.1002/pola.28728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Huang, Xiaoling, Ningqiang Zhang, Linzhe Ban, and Haiquan Su. "Synthesis of Star Poly(N-isopropylacrylamide) with a Core of Cucurbit[6]uril via ATRP and Controlled Thermoresponsivity." Macromolecular Rapid Communications 36, no. 3 (2014): 311–18. http://dx.doi.org/10.1002/marc.201400506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Narumi, Atsushi, Keita Fuchise, Ryohei Kakuchi, et al. "A Versatile Method for Adjusting Thermoresponsivity: Synthesis and ‘Click’ Reaction of an Azido End‐Functionalized Poly(N‐isopropylacrylamide)." Macromolecular Rapid Communications 29, no. 12–13 (2008): 1126–33. http://dx.doi.org/10.1002/marc.200800055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Rodchenko, Serafim, Mikhail Kurlykin, Andrey Tenkovtsev, et al. "Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions." Polymers 14, no. 23 (2022): 5118. http://dx.doi.org/10.3390/polym14235118.

Texte intégral
Résumé :
Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of the lengths of spacer between the grafting points and the side chains. The hydrodynamic properties and molecular conformation of the synthesized grafted copolymers and their behavior in aqueous solutions on heating were studied by the methods of molecular hydrodynamics and optics. It was found that the regularity and the grafting density do not affect the mole
Styles APA, Harvard, Vancouver, ISO, etc.
32

Manoswini, Manoswini, Prachi Bhol, Ranjan Bikash Sahu, and Sundar Priti Mohanty. "Antibody-functionalized, stimuli responsive microgel gold-hybrid colloids: synthesis, characterizations and their use in pathogen detection." Research Journal of Chemistry and Environment 27, no. 2 (2023): 91–99. http://dx.doi.org/10.25303/2702rjce91099.

Texte intégral
Résumé :
Antibody-functionalized hybrid microgels serve as an innovative approach for various translational applications particularly for detection of pathogens. We have synthesized Poly (N-isoproplyacrylamide)-co-poly(acrylic acid) (PNIPAm-PAA) based microgels encapsulated with gold nanoparticles followed by loading on antibodies specific to diarrheal pathogen, Salmonella typhimurium using the established streptavidin-biotin chemistry. Antibody-loaded hybrid microgel particles are further characterized with respect to their loading efficiencies using UV-Vis spectrometry and pH/temperature-dependent sw
Styles APA, Harvard, Vancouver, ISO, etc.
33

Chang, Xiaohua, Chen Wang, Guorong Shan, Yongzhong Bao, and Pengju Pan. "Thermoresponsivity, Micelle Structure, and Thermal-Induced Structural Transition of an Amphiphilic Block Copolymer Tuned by Terminal Multiple H-Bonding Units." Langmuir 36, no. 4 (2020): 956–65. http://dx.doi.org/10.1021/acs.langmuir.9b03290.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Li, Jiatu, Taisei Kaku, Yuki Tokura, et al. "Adsorption–Desorption Control of Fibronectin in Real Time at the Liquid/Polymer Interface on a Quartz Crystal Microbalance by Thermoresponsivity." Biomacromolecules 20, no. 4 (2019): 1748–55. http://dx.doi.org/10.1021/acs.biomac.9b00121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lee, Su-Kyoung, Yongdoo Park, and Jongseong Kim. "Thermoresponsive Behavior of Magnetic Nanoparticle Complexed pNIPAm-co-AAc Microgels." Applied Sciences 8, no. 10 (2018): 1984. http://dx.doi.org/10.3390/app8101984.

Texte intégral
Résumé :
Characterization of responsive hydrogels and their enhancement with novel moieties have improved our understanding of functional materials. Hydrogels coupled with inorganic nanoparticles have been sought for novel types of responsive materials, but the efficient routes for the formation and the responsivity of complexed materials remain for further investigation. Here, we report that responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) hydrogel microparticles (microgels) are tunable by varying composition of co-monomer and crosslinker as well as by their complexation with mag
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ďorďovič, Vladimír, Bart Verbraeken, Richard Hogenboom, Sami Kereïche, Pavel Matějíček, and Mariusz Uchman. "Tuning of Thermoresponsivity of a Poly(2-alkyl-2-oxazoline) Block Copolymer by Interaction with Surface-Active and Chaotropic Metallacarborane Anion." Chemistry - An Asian Journal 13, no. 7 (2018): 838–45. http://dx.doi.org/10.1002/asia.201701720.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Zhong-Xing, Xiao Liu, Fu Jian Xu та ін. "Pseudo-Block Copolymer Based on Star-Shaped Poly(N-isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly". Macromolecules 41, № 16 (2008): 5967–70. http://dx.doi.org/10.1021/ma8009646.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Li, Jian, Guihua Cui, Siyuan Bi, et al. "Eu3+- and Tb3+-Based Coordination Complexes of Poly(N-Isopropyl,N-methylacrylamide-stat-N,N-dimethylacrylamide) Copolymer: Synthesis, Characterization and Property." Polymers 14, no. 9 (2022): 1815. http://dx.doi.org/10.3390/polym14091815.

Texte intégral
Résumé :
This contribution reports the syntheses, structural analyses and properties of europium (Eu3+)- and terbium (Tb3+)-based coordination complexes of poly(N-isopropyl,N-methylacrylamide-stat-N,N-dimethylacrylamide) (poly(iPMAm-stat-DMAm)) copolymer, named as poly-Eu(III) and poly-Tb(III), respectively. In greater detail, poly(iPMAm85-stat-DMAm15) is first prepared by random copolymerization of N-isopropyl,N-methylacrylamide (iPMAm) and N,N-dimethylacrylamide (DMAm) via group transfer polymerization (GTP). Next, poly(iPMAm85-stat-DMAm15) is used as the polymer matrix for chelating with Eu3+ and Tb
Styles APA, Harvard, Vancouver, ISO, etc.
39

Sano, Kohei, Yuko Kanada, Kengo Kanazaki, Ning Ding, Masahiro Ono, and Hideo Saji. "Brachytherapy with Intratumoral Injections of Radiometal-Labeled Polymers That Thermoresponsively Self-Aggregate in Tumor Tissues." Journal of Nuclear Medicine 58, no. 9 (2017): 1380–85. http://dx.doi.org/10.2967/jnumed.117.189993.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Pu, Jingyang, Na Zhang, Quyang Liu, et al. "Temperature-Triggered Release of Chromium Chloride from Nanocapsules for Controlled Burst Release and Gelation of Hydrolyzed Polyacrylamide to Plug High-Permeability Channels." SPE Journal, December 1, 2022, 1–11. http://dx.doi.org/10.2118/212872-pa.

Texte intégral
Résumé :
Summary Chromium(III) (Cr3+)-hydrolyzed polyacrylamide (HPAM) gels have been applied extensively as blocking agents for sweep efficiency improvement. Previous studies focused on delaying the gelation time and ignored the diffusion of the crosslinkers during the transportation process. The gelation time of Cr3+-HPAM was too long to be controlled. This study systematically describes a novel approach of using thermoresponsive nanocapsules to precisely control the release of Cr3+. The nanocapsules are successfully prepared by a controlled nanoprecipitation of hydrophobic polymers [poly (methyl met
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!