Littérature scientifique sur le sujet « Time-Aware LSTM »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Time-Aware LSTM ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Time-Aware LSTM"
Cheng, Lin, Yuliang Shi, Kun Zhang, Xinjun Wang et Zhiyong Chen. « GGATB-LSTM : Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction ». ACM Transactions on Knowledge Discovery from Data 15, no 3 (mai 2021) : 1–16. http://dx.doi.org/10.1145/3441454.
Texte intégralWiessner, Paul, Grigor Bezirganyan, Sana Sellami, Richard Chbeir et Hans-Joachim Bungartz. « Uncertainty-Aware Time Series Anomaly Detection ». Future Internet 16, no 11 (31 octobre 2024) : 403. http://dx.doi.org/10.3390/fi16110403.
Texte intégralYadulla, Akhila Reddy, Mounica Yenugula, Vinay Kumar Kasula, Bhargavi Konda, Santosh Reddy Addula et Sarath Babu Rakki. « A time-aware LSTM model for detecting criminal activities in blockchain transactions ». International Journal of Communication and Information Technology 4, no 2 (1 juillet 2023) : 33–39. https://doi.org/10.33545/2707661x.2023.v4.i2a.108.
Texte intégralYang, Xuan, et James A. Esquivel. « Time-Aware LSTM Neural Networks for Dynamic Personalized Recommendation on Business Intelligence ». Tsinghua Science and Technology 29, no 1 (février 2024) : 185–96. http://dx.doi.org/10.26599/tst.2023.9010025.
Texte intégralChen, Long, Zhiyao Tian, Shunhua Zhou, Quanmei Gong et Honggui Di. « Attitude deviation prediction of shield tunneling machine using Time-Aware LSTM networks ». Transportation Geotechnics 45 (mars 2024) : 101195. http://dx.doi.org/10.1016/j.trgeo.2024.101195.
Texte intégralChen, Jie, Chang Liu, Jiawu Xie, Jie An et Nan Huang. « Time–Frequency Mask-Aware Bidirectional LSTM : A Deep Learning Approach for Underwater Acoustic Signal Separation ». Sensors 22, no 15 (26 juillet 2022) : 5598. http://dx.doi.org/10.3390/s22155598.
Texte intégralZhang, Jinkai, Wenming Ma, En Zhang et Xuchen Xia. « Time-Aware Dual LSTM Neural Network with Similarity Graph Learning for Remote Sensing Service Recommendation ». Sensors 24, no 4 (11 février 2024) : 1185. http://dx.doi.org/10.3390/s24041185.
Texte intégralZheng, Ruixuan, Yanping Bao, Lihua Zhao et Lidong Xing. « Prediction of steelmaking process variables using K-medoids and a time-aware LSTM network ». Heliyon 10, no 12 (juin 2024) : e32901. http://dx.doi.org/10.1016/j.heliyon.2024.e32901.
Texte intégralSubapriya Vijayakumar et Rajaprakash Singaravelu. « Time Aware Long Short-Term Memory and Kronecker Gated Intelligent Transportation for Smart Car Parking ». Journal of Advanced Research in Applied Sciences and Engineering Technology 44, no 1 (26 avril 2024) : 134–50. http://dx.doi.org/10.37934/araset.44.1.134150.
Texte intégralGui, Zhipeng, Yunzeng Sun, Le Yang, Dehua Peng, Fa Li, Huayi Wu, Chi Guo, Wenfei Guo et Jianya Gong. « LSI-LSTM : An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points ». Neurocomputing 440 (juin 2021) : 72–88. http://dx.doi.org/10.1016/j.neucom.2021.01.067.
Texte intégralThèses sur le sujet "Time-Aware LSTM"
Cissoko, Mamadou Ben Hamidou. « Adaptive time-aware LSTM for predicting and interpreting ICU patient trajectories from irregular data ». Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD012.
Texte intégralIn personalized predictive medicine, accurately modeling a patient's illness and care processes is crucial due to the inherent long-term temporal dependencies. However, Electronic Health Records (EHRs) often consist of episodic and irregularly timed data, stemming from sporadic hospital admissions, which create unique patterns for each hospital stay. Consequently, constructing a personalized predictive model necessitates careful consideration of these factors to accurately capture the patient's health journey and assist in clinical decision-making. LSTM networks are effective for handling sequential data like EHRs, but they face two significant limitations: the inability to interpret prediction results and to take into account irregular time intervals between consecutive events. To address limitations, we introduce novel deep dynamic memory neural networks called Multi-Way Adaptive and Adaptive Multi-Way Interpretable Time-Aware LSTM (MWTA-LSTM and AMITA) designed for irregularly collected sequential data. The primary objective of both models is to leverage medical records to memorize illness trajectories and care processes, estimate current illness states, and predict future risks, thereby providing a high level of precision and predictive power
Gaddari, Abdelhamid. « Analysis and Prediction of Patient Pathways in the Context of Supplemental Health Insurance ». Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10299.
Texte intégralThis thesis work falls into the category of healthcare informatics research, specifically the analysis and prediction of patients’ care pathways, which are the sequences of medical services consumed by patients over time. Our aim is to propose an innovative approach for the exploitation of patient care trajectory data in order to achieve not only binary, but also multi-label classification. We also design a new sentence embedding framework exclusively for the french medical domain, which will harness another view of the patients’ care pathways in order to enhance the predictive performance of our proposed approach. Our research is part of the work of CEGEDIM ASSURANCES, a business unit of the CEGEDIM Group that provides software and services for the french supplementary healthcare insurance and risk management sectors. By analyzing the patient care pathway and leveraging our proposed approach, we can extract valuable insights and identify patterns within the patients’ medical journeys in order to predict potential medical events or upcoming medical consumption. This will allow insurers to forecast future healthcare claims and therefore negotiate better rates with healthcare providers, allowing for accurate financial planning, fair pricing models and cost reductions. Furthermore, it enables private healthcare insurers to design personalized health plans that meet the specific needs of the patients, ensuring they receive the right care at the right time to prevent disease progression. Ultimately, offering preventive care programs and customized health products and services enhances client relationship, improving their satisfaction and reducing churn. In this work, we aim to develop an approach to analyze patient care pathways and predict medical events or upcoming treatments, based on a large portfolio of reimbursed medical records. To achieve this goal, we first propose a new time-aware long-short term memory based framework that can achieve both binary and multi-label classification. The proposed framework is then extended with another aspect of the patient healthcare trajectories, namely additional information from a fuzzy clustering of the same portfolio. We show that our proposed approach outperforms traditional and deep learning methods in medical binary and multi-label prediction. Subsequently, we enhance the predictive performance of our proposed approach by exploiting a supplementary view of the patient care pathways that consists of a detailed textual description of the consumed medical treatments. This is achieved through the design of F-BERTMed, a new sentence embedding framework for the french medical domain that presents significant advantages over the natural language processing (NLP) state-of-the-art methods. F-BERTMed is based on FlauBERT, whose pre-training using MLM (Masked Language Modeling) was extended on french medical texts before being fine-tuned on NLI (Natural Language Inference) and STS (Semantic Textual Similarity) tasks. We finally show that using F-BERTMed to generate a new representation of the patient care pathways enhances the performance of our proposed medical predictive framework on both binary and multi-label classification tasks
Chapitres de livres sur le sujet "Time-Aware LSTM"
Lee, Jeong Min, et Milos Hauskrecht. « Recent Context-Aware LSTM for Clinical Event Time-Series Prediction ». Dans Artificial Intelligence in Medicine, 13–23. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21642-9_3.
Texte intégralSahu, Parth, S. Raghavan, K. Chandrasekaran et Divakarla Usha. « Time-Aware Online QoS Prediction Using LSTM and Non-negative Matrix Factorization ». Dans Algorithms for Intelligent Systems, 369–76. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2248-9_35.
Texte intégralNguyen, An, Srijeet Chatterjee, Sven Weinzierl, Leo Schwinn, Martin Matzner et Bjoern Eskofier. « Time Matters : Time-Aware LSTMs for Predictive Business Process Monitoring ». Dans Lecture Notes in Business Information Processing, 112–23. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72693-5_9.
Texte intégralMishra, Abhinav. « Public Opinion Regarding COVID-19 Analyzed for Emotion Using Deep Learning Techniques ». Dans Demystifying Emerging Trends in Machine Learning, 350–62. BENTHAM SCIENCE PUBLISHERS, 2025. https://doi.org/10.2174/9789815305395125020034.
Texte intégralActes de conférences sur le sujet "Time-Aware LSTM"
Baytas, Inci M., Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain et Jiayu Zhou. « Patient Subtyping via Time-Aware LSTM Networks ». Dans KDD '17 : The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA : ACM, 2017. http://dx.doi.org/10.1145/3097983.3097997.
Texte intégralZhang, Yuan, Xi Yang, Julie Ivy et Min Chi. « ATTAIN : Attention-based Time-Aware LSTM Networks for Disease Progression Modeling ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/607.
Texte intégralLiu, Lucas Jing, Victor Ortiz-Soriano, Javier A. Neyra et Jin Chen. « KIT-LSTM : Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction ». Dans 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9994931.
Texte intégralChen, Zhiqi, Yao Wang, Gadi Wollstein, Maria de los Angeles Ramos-Cadena, Joel Schuman et Hiroshi Ishikawa. « Macular GCIPL Thickness Map Prediction via Time-Aware Convolutional LSTM ». Dans 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020. http://dx.doi.org/10.1109/isbi45749.2020.9098614.
Texte intégralNavarin, Nicolo, Beatrice Vincenzi, Mirko Polato et Alessandro Sperduti. « LSTM networks for data-aware remaining time prediction of business process instances ». Dans 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8285184.
Texte intégralYin, Changchang, Sayoko E. Moroi et Ping Zhang. « Predicting Age-Related Macular Degeneration Progression with Contrastive Attention and Time-Aware LSTM ». Dans KDD '22 : The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3534678.3539163.
Texte intégralYamamura, Tatsuya, Ismail Arai, Masatoshi Kakiuchi, Arata Endo et Kazutoshi Fujikawa. « Bus Ridership Prediction with Time Section, Weather, and Ridership Trend Aware Multiple LSTM ». Dans 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). IEEE, 2023. http://dx.doi.org/10.1109/percomworkshops56833.2023.10150218.
Texte intégralChen, Dehua, Liping Zhang, Ming Zuo et Qiao Pan. « Risk Assessment Model for Diabetic Cardiovascular Disease Via Personality and Time-Aware LSTM Network ». Dans International Conference on Biotechnology and Biomedicine. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0012032600003633.
Texte intégralAbdelhamid, Gaddari, Elghazel Haytham, Jaziri Rakia, Hacid Mohand-Saïd et Comble Pierre-Henri. « A New Time-Aware LSTM based Framework for Multi-label Classification on Healthcare Data ». Dans 2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA). IEEE, 2023. http://dx.doi.org/10.1109/aiccsa59173.2023.10479260.
Texte intégralPerera, Dilruk, et Roger Zimmermann. « LSTM Networks for Online Cross-Network Recommendations ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/532.
Texte intégral