Littérature scientifique sur le sujet « Transpeptidases »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Transpeptidases ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Transpeptidases"
Jacobs, Lian M. C., Patrick Consol et Yu Chen. « Drug Discovery in the Field of β-Lactams : An Academic Perspective ». Antibiotics 13, no 1 (8 janvier 2024) : 59. http://dx.doi.org/10.3390/antibiotics13010059.
Texte intégralPishesha, Novalia, Jessica R. Ingram et Hidde L. Ploegh. « Sortase A : A Model for Transpeptidation and Its Biological Applications ». Annual Review of Cell and Developmental Biology 34, no 1 (6 octobre 2018) : 163–88. http://dx.doi.org/10.1146/annurev-cellbio-100617-062527.
Texte intégralMercer, Keri L. N., et David S. Weiss. « The Escherichia coli Cell Division Protein FtsW Is Required To Recruit Its Cognate Transpeptidase, FtsI (PBP3), to the Division Site ». Journal of Bacteriology 184, no 4 (15 février 2002) : 904–12. http://dx.doi.org/10.1128/jb.184.4.904-912.2002.
Texte intégralHugonnet, Jean-Emmanuel, Nabila Haddache, Carole Veckerlé, Lionel Dubost, Arul Marie, Noriyasu Shikura, Jean-Luc Mainardi, Louis B. Rice et Michel Arthur. « Peptidoglycan Cross-Linking in Glycopeptide-Resistant Actinomycetales ». Antimicrobial Agents and Chemotherapy 58, no 3 (6 janvier 2014) : 1749–56. http://dx.doi.org/10.1128/aac.02329-13.
Texte intégralMagnet, Sophie, Lionel Dubost, Arul Marie, Michel Arthur et Laurent Gutmann. « Identification of the l,d-Transpeptidases for Peptidoglycan Cross-Linking in Escherichia coli ». Journal of Bacteriology 190, no 13 (2 mai 2008) : 4782–85. http://dx.doi.org/10.1128/jb.00025-08.
Texte intégralBahadur, Raj, Pavan Kumar Chodisetti et Manjula Reddy. « Cleavage of Braun’s lipoprotein Lpp from the bacterial peptidoglycan by a paralog of l,d-transpeptidases, LdtF ». Proceedings of the National Academy of Sciences 118, no 19 (3 mai 2021) : e2101989118. http://dx.doi.org/10.1073/pnas.2101989118.
Texte intégralDubée, Vincent, Sébastien Triboulet, Jean-Luc Mainardi, Mélanie Ethève-Quelquejeu, Laurent Gutmann, Arul Marie, Lionel Dubost, Jean-Emmanuel Hugonnet et Michel Arthur. « Inactivation of Mycobacterium tuberculosis l,d-Transpeptidase LdtMt1by Carbapenems and Cephalosporins ». Antimicrobial Agents and Chemotherapy 56, no 8 (21 mai 2012) : 4189–95. http://dx.doi.org/10.1128/aac.00665-12.
Texte intégralTolufashe, Gideon F., Victor T. Sabe, Colins U. Ibeji, Thandokuhle Ntombela, Thavendran Govender, Glenn E. M. Maguire, Hendrik G. Kruger, Gyanu Lamichhane et Bahareh Honarparvar. « Structure and Function of L,D- and D,D-Transpeptidase Family Enzymes from Mycobacterium tuberculosis ». Current Medicinal Chemistry 27, no 19 (4 juin 2020) : 3250–67. http://dx.doi.org/10.2174/0929867326666181203150231.
Texte intégralNguyen, David, Christopher Bethel, Magdalena A. Taracilla, Qing Li, Khalid M. Dousa, Sebastian G. Kurz, Liem Nguyen, Barry N. Kreiswirth, Wilem Boom et Robert A. Bonomo. « 1390. Durlobactam, a Diazabicyclooctane (DBO) β-lactamase Inhibitor (BLI), Inhibits BlaC and Peptidoglycan (PG) Transpeptidases of Mycobacterium tuberculosis (Mtb) : A Novel Approach to Therapeutics for Tuberculosis (TB) ? » Open Forum Infectious Diseases 8, Supplement_1 (1 novembre 2021) : S780. http://dx.doi.org/10.1093/ofid/ofab466.1582.
Texte intégralBiliuk, A., L. Garmanchuk, O. Skachkova, H. Repich et S. Orysyk. « Antineoplastic, anti-metastatic and metabolic effects of newly synthesized platinum complexes ». Bulletin of Taras Shevchenko National University of Kyiv. Series : Problems of Physiological Functions Regulation 23, no 2 (2017) : 69–75. http://dx.doi.org/10.17721/2616_6410.2017.23.69-75.
Texte intégralThèses sur le sujet "Transpeptidases"
Triboulet, Sébastien. « Mécanisme catalytique d'une nouvelle classe de transpeptidases du peptidoglycane ». Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066282.
Texte intégralL,D-transpeptidases, as D,D-transpeptidases belonging to the penicillin-binding protein (PBP) family, catalyse the last cross-links step of peptidoglycan biosynthesis. The peptidoglycan of an Enterococcus faecium mutant is exclusively cross-linked by L,D-transpeptidases leading to resistance to all β-lactams except the carbapenems. Since peptidoglycan cross-links are predominantly synthesized by L,D-transpeptidases in Mycobacterium tuberculosis these enzymes are potential targets for chemotherapy of tuberculosis. The aims of the thesis are to identify the kinetic features that account for the specificity of L,D-transpeptidases for carbapenems and to characterise the binding sites for the peptidoglycan precursors in these enzymes. Our results show that the oxyanion resulting from nucleophilic attack of carbapebems by the catalytic cysteine is stabilized into the active site of L,D-transpeptidases. This stabilisation, combined to the absence of hydrolysis of the acylenzyme, leads to the rapid, total and irreversible inactivation of L,D-transpeptidases by carbapenems. Resolution of the acylenzyme structure shows that these kinetic features are independent from the carbapenem side chain that could be modified to optimize the antibiotics. The binding of the acyle acceptor has been identified in Pocket II of Ldtfm that is distinct from the binding site for β-lactams (Pocket I), which mimic the acyle donor. This site and additional peptidoglycan binding sites reveal additional targets for development of new antibiotics that might act in synergy with β-lactams
Triboulet, Sébastien. « Mécanisme catalytique d'une nouvelle classe de transpeptidases du peptidoglycane ». Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066282.
Texte intégralL,D-transpeptidases, as D,D-transpeptidases belonging to the penicillin-binding protein (PBP) family, catalyse the last cross-links step of peptidoglycan biosynthesis. The peptidoglycan of an Enterococcus faecium mutant is exclusively cross-linked by L,D-transpeptidases leading to resistance to all β-lactams except the carbapenems. Since peptidoglycan cross-links are predominantly synthesized by L,D-transpeptidases in Mycobacterium tuberculosis these enzymes are potential targets for chemotherapy of tuberculosis. The aims of the thesis are to identify the kinetic features that account for the specificity of L,D-transpeptidases for carbapenems and to characterise the binding sites for the peptidoglycan precursors in these enzymes. Our results show that the oxyanion resulting from nucleophilic attack of carbapebems by the catalytic cysteine is stabilized into the active site of L,D-transpeptidases. This stabilisation, combined to the absence of hydrolysis of the acylenzyme, leads to the rapid, total and irreversible inactivation of L,D-transpeptidases by carbapenems. Resolution of the acylenzyme structure shows that these kinetic features are independent from the carbapenem side chain that could be modified to optimize the antibiotics. The binding of the acyle acceptor has been identified in Pocket II of Ldtfm that is distinct from the binding site for β-lactams (Pocket I), which mimic the acyle donor. This site and additional peptidoglycan binding sites reveal additional targets for development of new antibiotics that might act in synergy with β-lactams
Cordillot, Mathilde. « Les L,D‐transpeptidases, cibles des carbapénèmes chez Mycobacterium tuberculosis ». Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T030.
Texte intégralMycobacterium tuberculosis is responsible for 8.7 million of new cases of tuberculosis (TB) and 1.4 million of deaths in 2011. The emergence of strains resistant to the two first-line anti-TB drugs, isoniazid and rifampicin, (MDR), to second line-drugs (XDR) and the difficult to kill dormant forms of the bacilli require the discovery of new anti-TB antibiotics. β-lactams are usually not considered for tuberculosis treatment since M. tuberculosis produces a broad-spectrum β-lactamase, BlaC. However, the combination of β-lactam belonging to the carbapenem class, meropenem, with β-lactamase inhibitor, clavulanate, is notably active on XDR strains. Our aim was to characterize the carbapenem targets, atypical in M. tuberculosis, since peptidoglycan of this bacteria contains a majority (80%) of cross-links formed by a special transpeptidase family, the L,D-transpeptidases. We have compared the five L,D-transpeptidases of M. tuberculosis for their in vitro activities with respect to peptidoglycan dimers formation and for inactivation reaction by carbapenems. Thus, we have showed that the five L,D-transpeptidases were functional in vitro. LdtMt1, LdtMt2, LdtMt4 et LdtMt5 were able to form peptidoglycan cross-links binding the third amino acid of a donor tetrapeptide substrate with the third amino acid of an acceptor tetrapeptide substrate. These enzymes were also able to use D-methionine as an acceptor in exchange reaction of D-Ala4 of the donor tetrapeptide substrate. LdtMt1, LdtMt2, LdtMt3 et LdtMt4 formed a covalent adduct with carbapenems. The inactivation reaction of L,D-transpeptidases by carbapenems proceed through two steps. In first, a reversible covalent adduct is formed (catalytic constant k1), followed by a second step leading to acylenzyme formation (catalytic constant k2). The determination of kinetic constants of inactivation k1 et k2 revealed important differences between carbapenems. Except for LdtMt1, Imipenem inactivates L,D-transpeptidases more rapidly than other carbapenems indicating that modification of the carbapenem side chain could be used to optimize their anti-mycobacterial activity. In parallel, we have started the study of the L,D-transpeptidases regulation in various culture conditions will allow identifying the L,D-transpeptidases essential for growth and persistence of M. tuberculosis. This work might lead to identification of essential targets allowing eradication of M. tuberculosis dormant forms, which are difficult to treat with conventional anti-TB drugs
Han, Liyou. « Studies on γ-glutamyl transpeptidases by using mechanism-based inhibitors ». Kyoto University, 2006. http://hdl.handle.net/2433/136508.
Texte intégral0048
新制・課程博士
博士(農学)
甲第12670号
農博第1593号
新制||農||934(附属図書館)
学位論文||H18||N4196(農学部図書室)
UT51-2006-U375
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 坂田 完三, 教授 江﨑 信芳, 教授 宮川 恒
学位規則第4条第1項該当
Lefebvre, Anne-Laure. « Etude de l’activité in vitro des β-lactamines sur Mycobacterium abscessus et recherche de leurs cibles ». Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB107.
Texte intégralMycobacterium abscessus is an important pathogen responsible for pulmonary infections in cystic fibrosis patients or in patients suffering from bronchiectasis. The treatment of infections due to M. abscessus is complicated since this bacterium is naturally resistant to the antituberculous agents. The recommended treatment includes an aminoglycoside, a macrolide (clarithromycin) and a β-lactam (cefoxitin or imipenem), with a success rate of about 50 %. However, strains resistant to clarithromycin are frequently isolated, questioning the use of this antibiotic. M. abscessus naturally produces a broad spectrum β-lactamase (BlaMab) but the mechanisms of action of the β-lactams have not been studied in this species, impairing the optimization of the treatment by these antibiotics. The first objective was to identify and characterize the targets of β-lactams antibiotics in this species. Inhibiting the final stage of the peptidoglycan polymerization, the potential targets of β-lactams are three families of enzymes: the D,D-transpeptidases and D,Dcarboxypeptidases belonging to the family of penicillin-binding proteins (PBP), and the L,D-transpeptidases which are mainly responsible for this final stage in this species. To identify the targets, mutants resistant to β-lactams have been selected from the reference strain M. abscessus CIP104536 and from its β-lactamase-deficient derivative ΔblaMab. For both strains, the emergence of resistance to βlactams has required multiple steps, which is an advantage for the therapeutic use of these antibiotics. For the mutants derived from the strain CIP104536, phenotypic analyzes showed that the resistance to β-lactams is not due to an increase in the catalytic efficiency of BlaMab, to an overproduction of this enzyme, or to a decrease in permeability. Genomes sequencing of the resistant mutants did not reveal mutations in the genes encoding the L,D-transpeptidases, but mutations have been found in genes encoding two PBPs. Other mutations have been detected in genes encoding uncharacterized proteins. Acquisition of resistance could therefore depend on mutations affecting key factors essential for the activity of β-lactams targets. The second objective was to study and compare the in vitro activities of β-lactams against M. abscessus. Bactericidal experiments and intracellular activity in the infected macrophage were performed for the strains CIP104536 and ΔblaMab. Among the antibiotics tested (amikacin, cefoxitin, imipenem, ceftaroline, and amoxicillin), imipenem is the most effective agent against the two strains. Combination of imipenem and amikacin was bactericidal against the ΔblaMab mutant. In the absence of BlaMab, amoxicillin was as active as imipenem. Avibactam increased the intracellular activity of ceftaroline but inhibition of BlaMab was only partial intracellularly. Evaluation of the killing and intracellular activities of β-lactams indicates that imipenem is superior to cefoxitin at clinically achievable drug concentrations. Inhibition of BlaMab could improve the efficacy of imipenem and extend the spectrum of drug potentially useful to treat pulmonary infections
Morini, Federico. « Photobacterium damselae’s L-D transpeptidases : overexpression and purification optimised method and in vitro characterisation ». Thesis, Umeå universitet, Kemiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-134372.
Texte intégralLecoq, Lauriane. « Etudes par RMN des L,D-transpeptidases bactériennes : structure, dynamique et compréhension de leur inhibition par les beta-lactames ». Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00819829.
Texte intégralHugonnet, Jean-Emmanuel. « Nouveaux mécanismes de résistance aux β-lactamines et nouvelles cibles de ces antibiotiques chez les bactéries à Gram positif ». Paris 6, 2009. http://www.theses.fr/2009PA066457.
Texte intégralHugonneau, Beaufet Inès. « Adaptation de l'enveloppe bactérienne à la croissance en biofilm ». Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS056.pdf.
Texte intégralPeptidoglycan is an essential and specific macromolecule of the bacterial envelope, which maintains the shape of cells, provides mechanical protection against the osmotic pressure of the cytoplasm, and serves as an anchor for envelope polymers. Peptidoglycan is cross-linked by two families of enzymes, PBPs and LDTs, whose relative contribution is variable, and which are the targets of antibiotics belonging to the β-lactam family. While PBPs are potentially inhibited by all β-lactam antibiotics, LDTs are effectively inhibited by only one class of β-lactam antibiotics, the carbapenems. This thesis explores the role of LDTs in the adaptation of Escherichia coli and Pseudomonas aeruginosa to growth in biofilm. We have identified and functionally characterized three LDT paralogs in P. aeruginosa. In parallel, the role of the six LDT paralogs of E. coli was evaluated by constructing multiple deletions. In both bacterial species studied, growth in biofilm is associated with a significant increase in the contribution of LDTs to peptidoglycan polymerization. LDTs also play a critical role in stabilizing the envelope and in preventing the release of pro-inflammatory proteins into the bacterial culture medium. Thus, LDTs could be actionable targets to combat bacterial biofilms
Dubée, Vincent. « Stratégies d'optimisation des bêta-lactamines pour le traitement des infections dues aux mycobactéries multirésistantes ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066415.
Texte intégralThe emergence of multidrug-resistant tuberculosis and the intrinsic resistance of Mycobacterium abscessus to most antibiotics require the identification of new drugs and new therapeutic strategies. Mycobacteria are naturally poorly susceptible to β-lactam antibiotics due to production of a β-lactamase and of atypical low-affinity targets, the L,D-transpeptidases, which are effectively inactivated by a single class of β-lactams, the carbapenems. The aim of the thesis is to study the mode of action of β-lactams to propose strategies for the optimization of these antibiotics. To understand the specificity of L,D-transpeptidase for carbapenems, we have studied the kinetics and mechanism of inactivation of these enzymes using various stopped-flow spectroscopic methods. Our results indicate that the efficacy of carbapenems is due to their ability to rapidly form a tetrahedral intermediate and to the stability of the acylenzyme. The specificity of the L,D-transpeptidases for carbapenems does not depend upon the side chains of the drugs, which may be modified to improve their pharmacological properties. In M. abscessus, we have shown that the β-lactamase inhibitor avibactam increases the activity of various β-lactams in vitro, intracellularly, and in zebrafish model. Our results show that β-lactams can be optimized for the treatment of infections due to multidrug-resistant mycobacteria by improving inactivation of the targets and by inhibiting the β-lactamases
Livres sur le sujet "Transpeptidases"
Castellano, Immacolata, et Antonello Merlino. Gamma-Glutamyl Transpeptidases. Basel : Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0682-4.
Texte intégralCastellano, Immacolata. Gamma-glutamyl transpeptidases : Structure and function. Basel : Springer, 2013.
Trouver le texte intégralZhang, Lewei. Gamma-glutamyl transpeptidase and related enzyme activity in hamster buccal pouch carcinogenesis. [Toronto : University of Toronto, Faculty of Dentistry], 1989.
Trouver le texte intégralRuoso, Patrizia. Gamma-glutamyl transpeptidase activity and the maintenance of elevated cysteine levels in cervical carcinoma. Ottawa : National Library of Canada, 2001.
Trouver le texte intégral1942-, Sies H., et Packer Lester, dir. Gluthione transferases and gamma-glutamyl transpeptidases. Amsterdam : Elsevier Academic Press, 2005.
Trouver le texte intégralPacker, Lester, et Helmut Sies. Glutathione Transferases and Gamma-Glutamyl Transpeptidases. Elsevier Science & Technology Books, 2005.
Trouver le texte intégralGluthione [ i e. Glutathione] transferases and gamma-glutamyl transpeptidases. Amsterdam : Elsevier Academic Press, 2005.
Trouver le texte intégral(Editor), Helmut Sies, et Lester Packer (Editor), dir. Glutathione Transferases and gamma-Glutamyl Transpeptidases, Volume 401 (Methods in Enzymology). Academic Press, 2005.
Trouver le texte intégral(Editor), Helmut Sies, et Lester Packer (Editor), dir. Glutathione Transferases and gamma-Glutamyl Transpeptidases, Volume 401 (Methods in Enzymology). Academic Press, 2005.
Trouver le texte intégralZhang, Lewei. Gamma-glutamyl transpeptidase and related enzyme activity in hamster buccal pouch carcinogenesis. 1989.
Trouver le texte intégralChapitres de livres sur le sujet "Transpeptidases"
Castellano, Immacolata, et Antonello Merlino. « Gamma-Glutamyl Transpeptidases : Structure and Function ». Dans Gamma-Glutamyl Transpeptidases, 1–57. Basel : Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0682-4_1.
Texte intégralWharton, C. W., R. S. Chittock et S. Ward. « Infrared Spectroscopy of Interactions Between Antibiotics and β-Lactamases/Transpeptidases ». Dans Spectroscopy of Biological Molecules : Modern Trends, 147–50. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_66.
Texte intégralBensard, Denis D., Kathryn M. Beauchamp, Ryan T. Hurt, Stephen A. McClave, Angela M. Mills, Esther H. Chen, J. P. J. Wester et al. « γ-Glutamyl Transpeptidase ». Dans Encyclopedia of Intensive Care Medicine, 997. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_1010.
Texte intégralFakoya, Adegbenro Omotuyi John, et Martin Tarzian. « Gamma-Glutamyl Transpeptidase Deficiency ». Dans Genetic Syndromes, 1–3. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-319-66816-1_1747-1.
Texte intégralTaniguchi, Naoyuki, et Yoshitaka Ikeda. « γ-Glutamyl Transpeptidase : Catalytic Mechanism and Gene Expression ». Dans Advances in Enzymology - and Related Areas of Molecular Biology, 239–78. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470123188.ch7.
Texte intégralReyes, Edward. « The Effect of Prenatal Alcohol Exposure on γ-Glutamyl Transpeptidase ». Dans Liver Pathology and Alcohol, 117–32. Totowa, NJ : Humana Press, 1991. http://dx.doi.org/10.1007/978-1-4612-0421-3_4.
Texte intégralWolf, Sabine, et H. G. Gassen. « γ-Glutamyl Transpeptidase, a Blood-Brain Barrier Associated Membrane Protein ». Dans Advances in Experimental Medicine and Biology, 37–45. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9613-1_6.
Texte intégralMaj, Jerzy G., Jeremiasz J. Tomaszewski et Agnieszka E. Haratym. « Liver γ-Glutamyl Transpeptidase Activity after Cyclosporine A and Amlodipine Treatment ». Dans Liver Carcinogenesis, 249–60. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79215-1_15.
Texte intégralHill, Barbara A., Herng-Hsiang Lo, Terrence J. Monks et Serrine S. Lau. « The Role of γ-Glutamyl Transpeptidase in Hydroquinone-Glutathione Conjugate Mediated Nephrotoxicity ». Dans Advances in Experimental Medicine and Biology, 749–51. Boston, MA : Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-5877-0_99.
Texte intégralSuzuki, Hideyuki, et Hidehiko Kumagai. « Application of Bacterial γ-Glutamyl-Transpeptidase to Improve the Taste of Food ». Dans ACS Symposium Series, 223–37. Washington, DC : American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0867.ch015.
Texte intégralActes de conférences sur le sujet "Transpeptidases"
LaChapelle, Stephanie, Paul F. Cook et Marie H. Hanigan. « Abstract 760 : Sensitizing tumors to chemotherapy by inhibition of gamma-glutamyl transpeptidase ». Dans Proceedings : AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010 ; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-760.
Texte intégralHanigan, Marie H., Nancy Wakeham, Stephanie Wickham et Simon S. Terzyan. « Abstract 683 : Sensitizing tumors to pro-oxidant therapy by inhibiting gamma-glutamyl transpeptidase ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-683.
Texte intégral