Articles de revues sur le sujet « TRIM18 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « TRIM18 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Yap, Melvyn W., Mark P. Dodding, and Jonathan P. Stoye. "Trim-Cyclophilin A Fusion Proteins Can Restrict Human Immunodeficiency Virus Type 1 Infection at Two Distinct Phases in the Viral Life Cycle." Journal of Virology 80, no. 8 (2006): 4061–67. http://dx.doi.org/10.1128/jvi.80.8.4061-4067.2006.
Texte intégralToka, Felix N., Kiera Dunaway, Matylda Mielcarska, Felicia Smaltz, and Magdalena Bossowska-Nowicka. "Expression pattern of TRIM genes in bovine macrophages stimulated with PAMPs." Journal of Immunology 198, no. 1_Supplement (2017): 129.7. http://dx.doi.org/10.4049/jimmunol.198.supp.129.7.
Texte intégralSebastian, Sarah, Christian Grütter, Caterina Strambio de Castillia та ін. "An Invariant Surface Patch on the TRIM5α PRYSPRY Domain Is Required for Retroviral Restriction but Dispensable for Capsid Binding". Journal of Virology 83, № 7 (2009): 3365–73. http://dx.doi.org/10.1128/jvi.00432-08.
Texte intégralMargalit, Liad, Carmit Strauss, Ayellet Tal, and Sharon Schlesinger. "Trim24 and Trim33 Play a Role in Epigenetic Silencing of Retroviruses in Embryonic Stem Cells." Viruses 12, no. 9 (2020): 1015. http://dx.doi.org/10.3390/v12091015.
Texte intégralRybakowska, Paulina, Nina Wolska, Arkadiusz Klopocki, et al. "Multiple TRIM proteins are targets of autoimmune response in lupus and Sjogren's syndrome. (HUM7P.308)." Journal of Immunology 192, no. 1_Supplement (2014): 184.17. http://dx.doi.org/10.4049/jimmunol.192.supp.184.17.
Texte intégralAgarwal, Neeraj, Sebastien Rinaldetti, Bassem B. Cheikh, et al. "TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer." Proceedings of the National Academy of Sciences 118, no. 38 (2021): e2102423118. http://dx.doi.org/10.1073/pnas.2102423118.
Texte intégralStevens, Rebecca V., Diego Esposito, and Katrin Rittinger. "Characterisation of class VI TRIM RING domains: linking RING activity to C-terminal domain identity." Life Science Alliance 2, no. 3 (2019): e201900295. http://dx.doi.org/10.26508/lsa.201900295.
Texte intégralZanchetta, Melania E., Luisa M. R. Napolitano, Danilo Maddalo, and Germana Meroni. "The E3 ubiquitin ligase MID1/TRIM18 promotes atypical ubiquitination of the BRCA2-associated factor 35, BRAF35." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1864, no. 10 (2017): 1844–54. http://dx.doi.org/10.1016/j.bbamcr.2017.07.014.
Texte intégralMcAvera, Roisin M., and Lisa J. Crawford. "TIF1 Proteins in Genome Stability and Cancer." Cancers 12, no. 8 (2020): 2094. http://dx.doi.org/10.3390/cancers12082094.
Texte intégralHerquel, B., K. Ouararhni, K. Khetchoumian, et al. "Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma." Proceedings of the National Academy of Sciences 108, no. 20 (2011): 8212–17. http://dx.doi.org/10.1073/pnas.1101544108.
Texte intégralLascano, Josefina, Pradeep D. Uchil, Walther Mothes, and Jeremy Luban. "TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling." Journal of Virology 90, no. 1 (2015): 308–16. http://dx.doi.org/10.1128/jvi.02496-15.
Texte intégralKimura, Tomonori, Ashish Jain, Seong Won Choi, et al. "TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity." Journal of Cell Biology 210, no. 6 (2015): 973–89. http://dx.doi.org/10.1083/jcb.201503023.
Texte intégralPalomba, Tommaso, Giusy Tassone, Carmine Vacca, et al. "Exploiting ELIOT for Scaffold-Repurposing Opportunities: TRIM33 a Possible Novel E3 Ligase to Expand the Toolbox for PROTAC Design." International Journal of Molecular Sciences 23, no. 22 (2022): 14218. http://dx.doi.org/10.3390/ijms232214218.
Texte intégralReddi, Tejaswini S., Philipp E. Merkl, So-Yon Lim, Norman L. Letvin, and David M. Knipe. "Tripartite Motif 22 (TRIM22) protein restricts herpes simplex virus 1 by epigenetic silencing of viral immediate-early genes." PLOS Pathogens 17, no. 2 (2021): e1009281. http://dx.doi.org/10.1371/journal.ppat.1009281.
Texte intégralLionnard, Loïc, Pauline Duc, Margs S. Brennan, et al. "TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1." Cell Death & Differentiation 26, no. 5 (2018): 902–17. http://dx.doi.org/10.1038/s41418-018-0169-5.
Texte intégralLi, Xing, Yuan Li, Matthew Stremlau та ін. "Functional Replacement of the RING, B-Box 2, and Coiled-Coil Domains of Tripartite Motif 5α (TRIM5α) by Heterologous TRIM Domains". Journal of Virology 80, № 13 (2006): 6198–206. http://dx.doi.org/10.1128/jvi.00283-06.
Texte intégralAzuma, Kotaro, and Satoshi Inoue. "Efp/TRIM25 and Its Related Protein, TRIM47, in Hormone-Dependent Cancers." Cells 11, no. 15 (2022): 2464. http://dx.doi.org/10.3390/cells11152464.
Texte intégralJacques, David, Cy Jeffries, Matthew Caines, et al. "TRIM protein domain topology and implications for antiviral immunity." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C243. http://dx.doi.org/10.1107/s2053273314097563.
Texte intégralLassot, Iréna, Stéphan Mora, Suzanne Lesage та ін. "The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21". Cell Reports 25, № 9 (2018): 2484–96. http://dx.doi.org/10.1016/j.celrep.2018.11.002.
Texte intégralZhang, Wen, Zhengquan Cai, Mingzhu Kong, et al. "Prognostic significance of TRIM28 expression in patients with breast carcinoma." Open Medicine 16, no. 1 (2021): 472–80. http://dx.doi.org/10.1515/med-2021-0263.
Texte intégralTerui, Yasuhito, Ryoko Kuniyoshi, Yuji Mishima, Yuko Mishima, and Kiyohiko Hatake. "Ubiquitin E3 Ligase, Tripartite Motif Protein 68 (TRIM68) Inhibits TCP-1 b Function by Proteasome-Mediated Degradation and May Overcome Imatinib-Resistance." Blood 114, no. 22 (2009): 3789. http://dx.doi.org/10.1182/blood.v114.22.3789.3789.
Texte intégralLu, Hsin-Pin, Chieh-Ju Lin, Wen-Ching Chen, et al. "TRIM28 Regulates Dlk1 Expression in Adipogenesis." International Journal of Molecular Sciences 21, no. 19 (2020): 7245. http://dx.doi.org/10.3390/ijms21197245.
Texte intégralWang, Zhaofeng, Xiaobo Xu, Wenxiao Tang, Youcai Zhu, Jichao Hu, and Xingen Zhang. "Tripartite Motif Containing 11 Interacts with DUSP6 to Promote the Growth of Human Osteosarcoma Cells through Regulating ERK1/2 Pathway." BioMed Research International 2019 (December 26, 2019): 1–10. http://dx.doi.org/10.1155/2019/9612125.
Texte intégralZhou, Ling, Heng Wang, Min Zhong та ін. "The E3 Ubiquitin Ligase TRIM11 Facilitates Gastric Cancer Progression by Activating the Wnt/β-Catenin Pathway via Destabilizing Axin1 Protein". Journal of Oncology 2022 (21 лютого 2022): 1–14. http://dx.doi.org/10.1155/2022/8264059.
Texte intégralWynne, Claire, Rowan Higgs, Christine Biron, and Caroline Jefferies. "The role of TRIM68 in Toll-like receptor and RIG-I-like receptor induced interferon production (72.5)." Journal of Immunology 188, no. 1_Supplement (2012): 72.5. http://dx.doi.org/10.4049/jimmunol.188.supp.72.5.
Texte intégralLiu, Jinjin, Jun Rao, Xuming Lou, Jian Zhai, Zhenhua Ni, and Xiongbiao Wang. "Upregulated TRIM11 Exerts its Oncogenic Effects in Hepatocellular Carcinoma Through Inhibition of P53." Cellular Physiology and Biochemistry 44, no. 1 (2017): 255–66. http://dx.doi.org/10.1159/000484678.
Texte intégralShang, Rongxin, Jiakuan Chen, Yang Gao, Jijun Chen, and Guoliang Han. "TRIM58 Interacts with ZEB1 to Suppress NSCLC Tumor Malignancy by Promoting ZEB1 Protein Degradation via UPP." Disease Markers 2023 (January 5, 2023): 1–13. http://dx.doi.org/10.1155/2023/5899662.
Texte intégralMa, Xin, Sheng Zhang, Meiling Zhang, et al. "TRIM28 down-regulation on methylation imprints in bovine preimplantation embryos." Zygote 26, no. 6 (2018): 449–56. http://dx.doi.org/10.1017/s0967199418000424.
Texte intégralLi, Lin, Qi Li, Zhengrong Zou, Zoufang Huang та Yijian Chen. "TRIM10 Is Downregulated in Acute Myeloid Leukemia and Plays a Tumor Suppressive Role via Regulating NF-κB Pathway". Cancers 15, № 2 (2023): 417. http://dx.doi.org/10.3390/cancers15020417.
Texte intégralJin, Xin, Bin Zhang, Hao Zhang, and Haixin Yu. "Smoking-associated upregulation of CBX3 suppresses ARHGAP24 expression to activate Rac1 signaling and promote tumor progression in lung adenocarcinoma." Oncogene 41, no. 4 (2021): 538–49. http://dx.doi.org/10.1038/s41388-021-02114-8.
Texte intégralTan, Hongwei, Jin Qi, Guanghua Chu, and Zhaoyang Liu. "Tripartite Motif 16 Inhibits the Migration and Invasion in Ovarian Cancer Cells." Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 25, no. 4 (2017): 551–58. http://dx.doi.org/10.3727/096504016x14758370595285.
Texte intégralHan, Jiyu, Yanhong Wang, Haichao Zhou, Songtao Ai, and Daqian Wan. "Integrated Bioinformatics and Experimental Analysis Identified TRIM28 a Potential Prognostic Biomarker and Correlated with Immune Infiltrates in Liver Hepatocellular Carcinoma." Computational and Mathematical Methods in Medicine 2022 (October 4, 2022): 1–17. http://dx.doi.org/10.1155/2022/6267851.
Texte intégralYuan, Peng, Yiyi Zhou, Rui Wang, et al. "TRIM58 Interacts with Pyruvate Kinase M2 to Inhibit Tumorigenicity in Human Osteosarcoma Cells." BioMed Research International 2020 (March 7, 2020): 1–9. http://dx.doi.org/10.1155/2020/8450606.
Texte intégralChang, Yao-Jen, Zhifu Kang, Jiayuan Bei, et al. "Generation of TRIM28 Knockout K562 Cells by CRISPR/Cas9 Genome Editing and Characterization of TRIM28-Regulated Gene Expression in Cell Proliferation and Hemoglobin Beta Subunits." International Journal of Molecular Sciences 23, no. 12 (2022): 6839. http://dx.doi.org/10.3390/ijms23126839.
Texte intégralNeo, Shu Hui, Yoko Itahana, Jennifer Alagu, et al. "TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification." Molecular and Cellular Biology 35, no. 16 (2015): 2851–63. http://dx.doi.org/10.1128/mcb.01064-14.
Texte intégralDi, Kaijun, Daniela Abrams, Pratik Yadav, Bhaskar Das, and Daniela Bota. "EXTH-50. IDENTIFYING TRIM11 AS A POTENTIAL THERAPEUTIC TARGET FOR MALIGNANT GLIOMAS." Neuro-Oncology 24, Supplement_7 (2022): vii220. http://dx.doi.org/10.1093/neuonc/noac209.848.
Texte intégralLu, Zhengri, Mengen Deng, Genshan Ma та Lijuan Chen. "TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF-κB signalling pathway". PeerJ 10 (29 серпня 2022): e13815. http://dx.doi.org/10.7717/peerj.13815.
Texte intégralDang, Xiaoyan, Yong Qin, Changwei Gu, Jiangli Sun, Rui Zhang, and Zhuo Peng. "Knockdown of Tripartite Motif 8 Protects H9C2 Cells Against Hypoxia/Reoxygenation-Induced Injury Through the Activation of PI3K/Akt Signaling Pathway." Cell Transplantation 29 (January 1, 2020): 096368972094924. http://dx.doi.org/10.1177/0963689720949247.
Texte intégralLi, Min, Xiaohua Xu, Chou-Wei Chang, and Yilun Liu. "TRIM28 functions as the SUMO E3 ligase for PCNA in prevention of transcription induced DNA breaks." Proceedings of the National Academy of Sciences 117, no. 38 (2020): 23588–96. http://dx.doi.org/10.1073/pnas.2004122117.
Texte intégralHuang, Xuan, Yong Li, Xiuzhen Li, Daping Fan, Hong-Bo Xin та Mingui Fu. "TRIM14 promotes endothelial activation via activating NF-κB signaling pathway". Journal of Molecular Cell Biology 12, № 3 (2019): 176–89. http://dx.doi.org/10.1093/jmcb/mjz040.
Texte intégralNarayan, Kavitha, та Joonsoo Kang. "The RING E3 ubiquitin ligase Trim13 (Rfp2) influences αβ and γδ T cell development (B5)". Journal of Immunology 178, № 1_Supplement (2007): LB1. http://dx.doi.org/10.4049/jimmunol.178.supp.b5.
Texte intégralLiu, Ruoxi, Hao Wu та Huanjin Song. "Knockdown of TRIM8 Attenuates IL-1β-induced Inflammatory Response in Osteoarthritis Chondrocytes Through the Inactivation of NF-κB Pathway". Cell Transplantation 29 (1 січня 2020): 096368972094360. http://dx.doi.org/10.1177/0963689720943604.
Texte intégralLi, Yong, Daping Fan та Mingui Fu. "TRIM14 promotes endothelial activation via NF-κB signaling pathway". Journal of Immunology 202, № 1_Supplement (2019): 59.9. http://dx.doi.org/10.4049/jimmunol.202.supp.59.9.
Texte intégralThom, Christopher S., Eugene Khandros, Yu Yao, et al. "Trim58 Is a Putative E3 Ubiquitin Ligase That Functions in Late Stage Erythropoiesis." Blood 120, no. 21 (2012): 83. http://dx.doi.org/10.1182/blood.v120.21.83.83.
Texte intégralCzerwinska, Patrycja, Anna Maria Jaworska, Nikola Agata Wlodarczyk, and Andrzej Adam Mackiewicz. "Melanoma Stem Cell-Like Phenotype and Significant Suppression of Immune Response within a Tumor Are Regulated by TRIM28 Protein." Cancers 12, no. 10 (2020): 2998. http://dx.doi.org/10.3390/cancers12102998.
Texte intégralTomonori, Hosoya, Mary Clifford, and James Engel. "TRIM28 Is Essential For Erythroblast Differentiation In The Mouse." Blood 122, no. 21 (2013): 2182. http://dx.doi.org/10.1182/blood.v122.21.2182.2182.
Texte intégralBaek, Suk-Hwan, Bin Huang та Han Zhong Pei. "Role of Trim13 in toll-like receptor 2-mediated NF-κB activation". Journal of Immunology 198, № 1_Supplement (2017): 75.10. http://dx.doi.org/10.4049/jimmunol.198.supp.75.10.
Texte intégralLiu, Yanwei, Yifan Wei, Ziwei Zhou, et al. "Overexpression of TRIM16 Reduces the Titer of H5N1 Highly Pathogenic Avian Influenza Virus and Promotes the Expression of Antioxidant Genes through Regulating the SQSTM1-NRF2-KEAP1 Axis." Viruses 15, no. 2 (2023): 391. http://dx.doi.org/10.3390/v15020391.
Texte intégralWang, Yinfang, Yilong Hao, Yuanyuan Zhao та ін. "TRIM28 and TRIM27 are required for expressions of PDGFRβ and contractile phenotypic genes by vascular smooth muscle cells". FASEB Journal 34, № 5 (2020): 6271–83. http://dx.doi.org/10.1096/fj.201902828rr.
Texte intégralForlani, Greta, Filippo Turrini, Guido Poli, Elisa Vicenzi, and Roberto Accolla. "P-D2 TRIM22 binds to CIITA and sequesters it into nuclear bodies containing TRIM19/PML and Cyclin T1." JAIDS Journal of Acquired Immune Deficiency Syndromes 77 (April 2018): 59. http://dx.doi.org/10.1097/01.qai.0000532512.60222.b5.
Texte intégral