Littérature scientifique sur le sujet « Uncertainty propagation in a dynamical context »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Uncertainty propagation in a dynamical context ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Uncertainty propagation in a dynamical context"
Raïssi, Tarek, et Denis Efimov. « Some recent results on the design and implementation of interval observers for uncertain systems ». at - Automatisierungstechnik 66, no 3 (26 mars 2018) : 213–24. http://dx.doi.org/10.1515/auto-2017-0081.
Texte intégralMartins, L. L., J. P. Gomes et A. S. Ribeiro. « Metrological quality of the excitation force in forced vibration test of concrete dams ». Journal of Physics : Conference Series 2647, no 21 (1 juin 2024) : 212001. http://dx.doi.org/10.1088/1742-6596/2647/21/212001.
Texte intégralMezić, Igor, et Thordur Runolfsson. « Uncertainty propagation in dynamical systems ». Automatica 44, no 12 (décembre 2008) : 3003–13. http://dx.doi.org/10.1016/j.automatica.2008.04.020.
Texte intégralBanks, H. T., et Shuhua Hu. « Propagation of Uncertainty in Dynamical Systems ». Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications 2012 (5 mai 2012) : 134–39. http://dx.doi.org/10.5687/sss.2012.134.
Texte intégralPiqueira, José R. C., et Felipe Barbosa Cesar. « Dynamical Models for Computer Viruses Propagation ». Mathematical Problems in Engineering 2008 (2008) : 1–11. http://dx.doi.org/10.1155/2008/940526.
Texte intégralDeMars, Kyle J., Robert H. Bishop et Moriba K. Jah. « Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems ». Journal of Guidance, Control, and Dynamics 36, no 4 (juillet 2013) : 1047–57. http://dx.doi.org/10.2514/1.58987.
Texte intégralPark, Inkwan, Kohei Fujimoto et Daniel J. Scheeres. « Effect of Dynamical Accuracy for Uncertainty Propagation of Perturbed Keplerian Motion ». Journal of Guidance, Control, and Dynamics 38, no 12 (décembre 2015) : 2287–300. http://dx.doi.org/10.2514/1.g000956.
Texte intégralXu, Tianlai, Zhe Zhang et Hongwei Han. « Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation ». Applied Sciences 13, no 5 (27 février 2023) : 3069. http://dx.doi.org/10.3390/app13053069.
Texte intégralBaili, H., et G. A. Fleury. « Indirect Measurement Within Dynamical Context : Probabilistic Approach to Deal With Uncertainty ». IEEE Transactions on Instrumentation and Measurement 53, no 6 (décembre 2004) : 1449–54. http://dx.doi.org/10.1109/tim.2004.831138.
Texte intégralKuehn, Christian. « Uncertainty transformation via Hopf bifurcation in fast–slow systems ». Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 473, no 2200 (avril 2017) : 20160346. http://dx.doi.org/10.1098/rspa.2016.0346.
Texte intégralThèses sur le sujet "Uncertainty propagation in a dynamical context"
Hernandez-Sabio, Sylvain. « Contribution à la métrologie des faibles forces : traçabilité des mesures dynamiques par inversion ensembliste ». Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD058.
Texte intégralThis PhD thesis is a contribution to small force metrology, in line with the research activities carried out in the AS2M department of the FEMTO-ST institute. This manuscript presents the design and experimental implementation of a triaxial pendulous accelerometer, which measures the unfiltered seismic activity, since the latter is likely to interfere with the operation of an electromagnetic micro-nanoforce balance currently under development. An alternative methodology is also proposed in this manuscript to specifically estimate the value and uncertainty associated with one or more unknown quantities of interest, using a dynamical SISO system whose behavior is uncertain and disturbed. This approach is based on the exact representation of this system by means of a virtual corrective input containing the quantities of interest. This input is estimated and then shaped to determine the uncertainty associated with these quantities of interest, using the tools of interval analysis. The proposed methodology is validated on the basis of simulated accelerometer responses in active and passive modes, then illustrated on the experimental setup. A simulation study of the coupled operation of the future electromagnetic micro-nanoforce balance with the triaxial accelerometer is also carried out. The proposed approach is implemented in a simulated test aiming at characterizing the mechanical stiffness of an elastic cantilever
Kundu, Abhishek. « Efficient uncertainty propagation schemes for dynamical systems with stochastic finite element analysis ». Thesis, Swansea University, 2014. https://cronfa.swan.ac.uk/Record/cronfa42292.
Texte intégralPerrin, Guillaume. « Random fields and associated statistical inverse problems for uncertainty quantification : application to railway track geometries for high-speed trains dynamical responses and risk assessment ». Phd thesis, Université Paris-Est, 2013. http://pastel.archives-ouvertes.fr/pastel-01001045.
Texte intégralAudinot, Timothée. « Développement d’un modèle de dynamique forestière à grande échelle pour simuler les forêts françaises dans un contexte non-stationnaire ». Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0179.
Texte intégralContext. Since the industrial revolution, European forests have shown expansion of their area and growing stock. This expansion, together with climate change, drive changes in the processes of forest dynamic. The emergence of a European bioeconomy strategy suggests new developments of forest management strategies at European and national levels. Simulating future forest resources and their management with large-scale models is therefore essential to provide strategic planning support tools. In France, forest resources show high diversity as compared with other European countries' forests. The MARGOT forest dynamic model (MAtrix model of forest Resource Growth and dynamics On the Territory scale), was developed by the national forest inventory (IFN) in 1993 to simulate French forest resources from data of this inventory, but has been the subject of restricted developments, and simulations remain limited to a time horizon shorter than 30 years, under “business as usual” management scenarios, and not taking into account non-stationary forest and environmental contexts.Aims. The general ambition of this thesis was to consent a significant development effort on MARGOT model, in order to tackle current forestry issues. The specific objectives were: i) to assess the capacity of MARGOT to describe French forest expansion over a long retrospective period (1971-2016), ii) to take into account the heterogeneity of forests at large-scale in a holistic way, iii) to account for the impacts of forest densification in demographic dynamic processes, iv) to encompass external climatic forcing in forest growth, v) in a very uncertain context, to be able to quantify NFI sampling uncertainty in model parameters and simulations with respect to the magnitude of other trends considered. The development of forest management scenarios remained outside the scope of this work.Main results. A generic method for forest partitioning according to their geographic and compositional heterogeneity has been implemented. This method is intended to be applied to other European forest contexts. A method of propagating sampling uncertainty to model parameters and simulations has been developed from data resampling and error modelling approaches. An original approach to integrating density-dependence in demographic processes has been developed, based on a density metric and the reintroduction of forest stand entities adapted to the model. A strategy for integrating climate forcing of model demographic parameters was developed based on an input-output coupling approach with the process-based model CASTANEA, for a subset of French forests including oak, beech, Norway spruce, and Scots pine forests. All of these developments significantly reduced the prediction bias of the initial model.Conclusions. These developments make MARGOT a much more reliable forest resource assessment tool, and are based on an original modeling approach that is unique in Europe. The use of ancient forest statistics will make it possible to evaluate the model and simulate the carbon stock of French forests over a longer time horizon (over 100 years). Intensive simulations to assess the performance of this new model must be done
Livres sur le sujet "Uncertainty propagation in a dynamical context"
Louchet, Francois. Snow Avalanches. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198866930.001.0001.
Texte intégralChapitres de livres sur le sujet "Uncertainty propagation in a dynamical context"
Chelle-Michou, Cyril, et Urs Schaltegger. « U–Pb Dating of Mineral Deposits : From Age Constraints to Ore-Forming Processes ». Dans Isotopes in Economic Geology, Metallogenesis and Exploration, 37–87. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_3.
Texte intégral« Propagation of Uncertainty in a Continuous Time Dynamical System ». Dans Modeling and Inverse Problems in the Presence of Uncertainty, 223–322. Chapman and Hall/CRC, 2014. http://dx.doi.org/10.1201/b16760-9.
Texte intégralHans Alexander et Udluft Steffen. « Uncertainty Propagation for Efficient Exploration in Reinforcement Learning ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2010. https://doi.org/10.3233/978-1-60750-606-5-361.
Texte intégralWest, Mike. « Some Statistical Issues in Palæoclimatology¹ ». Dans Bayesian Statistics 5, 461–84. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198523567.003.0024.
Texte intégralChadwick, P., et N. H. Scott. « Linear dynamical stability in constrained thermoelasticity I. Deformation-temperature constraints ». Dans Nonlinear Elasticity and Theoretical Mechanics, 125–34. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198534860.003.0011.
Texte intégralChakraverty, S., et Smita Tapaswini. « Numerical Solution of Fuzzy Differential Equations and its Applications ». Dans Advances in Computational Intelligence and Robotics, 127–49. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4991-0.ch007.
Texte intégralBullough, R. K., et R. Hynne. « Ewald’s optical extinction theorem ». Dans P. P. Ewald and his Dynamical Theory of X-ray Diffraction, 98–110. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198553793.003.0012.
Texte intégralAntolin, William P., Aurélien Costes, Mélanie C. Rochoux et Patrick Le Moigne. « Accounting for the canopy drag effects on wildland fire spread in coupled atmosphere/fire simulations ». Dans Advances in Forest Fire Research 2022, 959–64. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_145.
Texte intégralActes de conférences sur le sujet "Uncertainty propagation in a dynamical context"
Zanoni, Andrea, Michele Zilletti, Gianni Cassoni, Carmen Talamo, Davide Marchesoli, Pierangelo Masarati et Francesca Colombo. « An Uncertainty Propagation Approach to Collective Bounce Rotorcraft-Pilot Couplings Analysis ». Dans Vertical Flight Society 80th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1321.
Texte intégralKumar, Alok, et Atul Kelkar. « Uncertainty Propagation in Dynamical Systems Using Koopman Eigenfunctions ». Dans 2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE). IEEE, 2023. http://dx.doi.org/10.1109/cacre58689.2023.10209022.
Texte intégralMezic, I. « Coupled nonlinear dynamical systems : asymptotic behavior and uncertainty propagation ». Dans 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1430303.
Texte intégralTerejanu, Gabriel, Puneet Singla, Tarunraj Singh et Peter Scott. « Uncertainty Propagation for Nonlinear Dynamical Systems Using Gaussian Mixture Models ». Dans AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-7472.
Texte intégralDiez, Matteo, Zhaoyuan Wang, Sungtek Park, Christian Milano, Frederick Stern, Hironori Yasukawa, Andrew Gunderson et John Scherer. « Multi-Fidelity MMG-Model for Digital Design of High-Speed Small Craft ». Dans SNAME Power Boat Symposium. SNAME, 2024. http://dx.doi.org/10.5957/cpbs-2024-008.
Texte intégralDe, Saibal, Reese Jones et Hemanth Kolla. « Uncertainty Propagation in Dynamical Systems via Stochastic Collocation on Model Dynamics. » Dans Proposed for presentation at the USACM Thematic Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP) held August 18-19, 2022 in Crystal City, Arlington, Virginia. US DOE, 2022. http://dx.doi.org/10.2172/2004300.
Texte intégralDe, Saibal, Reese Jones et Hemanth Kolla. « Uncertainty Propagation in Dynamical Systems via Stochastic Collocation on Model Dynamics. » Dans Proposed for presentation at the USACM Thematic Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP) held August 18-19, 2022 in Crystal City, Arlington, Virginia. US DOE, 2022. http://dx.doi.org/10.2172/2004282.
Texte intégralSchäfer, Felicitas, Shuai Guo et Wolfgang Polifke. « The Impact of Exceptional Points on the Reliability of Thermoacoustic Stability Analysis ». Dans ASME Turbo Expo 2020 : Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15496.
Texte intégralVarigonda, S., T. Kalmar-Nagy, B. LaBarre et I. Mezic. « Graph decomposition methods for uncertainty propagation in complex, nonlinear interconnected dynamical systems ». Dans 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1430306.
Texte intégralRamapuram Matavalam, Amarsagar Reddy, Umesh Vaidya et Venkataramana Ajjarapu. « Data-Driven Approach for Uncertainty Propagation and Reachability Analysis in Dynamical Systems ». Dans 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147295.
Texte intégralRapports d'organisations sur le sujet "Uncertainty propagation in a dynamical context"
Banks, H. T., et Shuhua Hu. Propagation of Uncertainty in Dynamical Systems. Fort Belvoir, VA : Defense Technical Information Center, octobre 2011. http://dx.doi.org/10.21236/ada556937.
Texte intégralParsons, Donald. A Tutorial for Generating Correlated Random Samples in the Context of Replica Cross Section Data Used in the Propagation of Uncertainty (Second Edition). Office of Scientific and Technical Information (OSTI), novembre 2023. http://dx.doi.org/10.2172/2228641.
Texte intégral