Littérature scientifique sur le sujet « Variable geometry compressor »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Variable geometry compressor ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Variable geometry compressor"

1

Gallar, Luis, Manuel Arias, Vassilios Pachidis, and Riti Singh. "Stochastic axial compressor variable geometry schedule optimisation." Aerospace Science and Technology 15, no. 5 (2011): 366–74. http://dx.doi.org/10.1016/j.ast.2010.08.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nelson, S. A., Z. S. Filipi, and D. N. Assanis. "The Use of Neural Nets for Matching Fixed or Variable Geometry Compressors With Diesel Engines." Journal of Engineering for Gas Turbines and Power 125, no. 2 (2003): 572–79. http://dx.doi.org/10.1115/1.1563239.

Texte intégral
Résumé :
A technique which uses trained neural nets to model the compressor in the context of a turbocharged diesel engine simulation is introduced. This technique replaces the usual interpolation of compressor maps with the evaluation of a smooth mathematical function. Following presentation of the methodology, the proposed neural net technique is validated against data from a truck type, 6-cylinder 14-liter diesel engine. Furthermore, with the introduction of an additional parameter, the proposed neural net can be trained to simulate an entire family of compressors. As a demonstration, a family of compressors of different sizes is represented with a single neural net model which is subsequently used for matching calculations with intercooled and nonintercooled engine configurations at different speeds. This novel approach readily allows for evaluation of various options within a wide range of possible compressor configurations prior to prototype production. It can also be used to represent the variable geometry machine regardless of the method used to vary compressor characteristics. Hence, it is a powerful design tool for selection of the best compressor for a given diesel engine system and for broader system optimization studies.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sehra, A., J. Bettner, and A. Cohn. "Design of a High-Performance Axial Compressor for Utility Gas Turbine." Journal of Turbomachinery 114, no. 2 (1992): 277–86. http://dx.doi.org/10.1115/1.2929141.

Texte intégral
Résumé :
An aerodynamic design study to configure a high-efficiency industrial-size gas turbine compressor is presented. This study was conducted using an advanced aircraft engine compressor design system. Starting with an initial configuration based on conventional design practice, compressor design parameters were progressively optimized. To improve the efficiency potential of this design further, several advanced design concepts (such as stator ends bends and velocity controlled airfoils) were introduced. The projected poly tropic efficiency of the final advanced concept compressor design having 19 axial stages was estimated at 92.8 percent, which is 2 to 3 percent higher than the current high-efficiency aircraft turbine engine compressors. The influence of variable geometry on the flow and efficiency (at design speed) was also investigated. Operation at 77 percent design flow with inlet guide vanes and front five variable stators is predicted to increase the compressor efficiency by 6 points as compared to conventional designs having only the inlet guide vane as variable geometry.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Broichhausen, K. D., H. E. Gallus, and R. Mo¨nig. "Off-Design Performance of Supersonic Compressors With Fixed and Variable Geometry." Journal of Turbomachinery 110, no. 3 (1988): 312–21. http://dx.doi.org/10.1115/1.3262197.

Texte intégral
Résumé :
Regarding the extremely high pressure ratios of jet-engine compressors for the next decade, increasing interest belongs to the further development of supersonic compressors with supersonic relative flow at rotor inlet and supersonic absolute flow at stator inlet. In the past, different suitable design procedures for these components have been developed and tested successfully. However, there is a lack of information concerning the off-design performance of supersonic compressors. The present paper first systematically shows blading and flow path geometry of different experimentally investigated supersonic axial flow compressors. These investigations refer to combinations of characteristic rotors and stators with fixed and variable geometry. A comparison of these geometric data with the main characteristics of the flow pattern shows that, for the investigated stages, the three-dimensional passage geometry has an essential influence on the off-design performance. On the basis of this information semi-empirical models are established for a numerical description of the flow phenomena with predominant influence, as for example shock-, profile-, and endwall boundary layer losses and rotor-stator interactions. For the determination of the off-design performance, these models are incorporated into a streamline curvature calculation method. The computer model established is able to describe the off-design characteristics of the different investigated supersonic compressor stages in the most important operating range.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Muir, D. E., H. I. H. Saravanamuttoo, and D. J. Marshall. "Health Monitoring of Variable Geometry Gas Turbines for the Canadian Navy." Journal of Engineering for Gas Turbines and Power 111, no. 2 (1989): 244–50. http://dx.doi.org/10.1115/1.3240243.

Texte intégral
Résumé :
The Canadian Department of National Defence has identified a need for improved Engine Health Monitoring procedures for the new Canadian Patrol Frigate (CPF). The CPF propulsion system includes two General Electric LM2500 gas turbines, a high-pressure-ratio engine with multiple stages of compressor variable geometry. A general method for predicting the thermodynamic performance of variable geometry axial compressors has been developed. The new modeling technique is based on a meanline stage-stacking analysis and relies only on the limited performance data typically made available by engine manufacturers. The method has been applied to the LM2500-30 marine gas turbine and the variations in engine performance that can result from a malfunction of the variable geometry system in service have been estimated.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tesfamichael Baheta, Aklilu, S. I. Gilani, and Shaharin Anwar Sulaiman. "Performance Evaluation of a Variable Geometry Gas Turbine in a CHP Plant." Applied Mechanics and Materials 798 (October 2015): 59–63. http://dx.doi.org/10.4028/www.scientific.net/amm.798.59.

Texte intégral
Résumé :
This study is to develop mathematical models and evaluate the performance of a gas turbine with variable geometry compressor working in a CHP plant. A single shaft gas turbine plant can maintain the exhaust gas temperature if the load is not below 50 % of the full load by simultaneously regulating the compressor variable vanes position and fuel flow. For load less than 50% the engine is running to meet the power demand. This is achieved by controlling the fuel flow and air bleed at the downstream of the compressor to avoid surge formation while variable vanes are opened fully. To accommodate change of compressor parameters during variable vanes re-stagger correction coefficients are introduced. A behavior of a 4.2 MW gas turbine performance was evaluated. The effect of variation of load and ambient temperature on the gas turbine specific fuel consumption, temperature, pressure ratio, variable vanes opening and efficiency were examined. Comparison between the field data and simulation results demonstrate good agreement. The off-design calculation was done by in-house developed program in MATLAB environment.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wirkowski, Paweł. "Modelling the characteristics of axial compressor of variable flow passage geometry, working in the gas turbine engine system." Polish Maritime Research 14, no. 3 (2007): 27–32. http://dx.doi.org/10.2478/v10012-007-0015-z.

Texte intégral
Résumé :
Modelling the characteristics of axial compressor of variable flow passage geometry, working in the gas turbine engine system This paper concerns application of mathematical modelling methods to analyzing gas-dynamic processes in marine gas turbines. Influence of geometry changes in axial compressor flow passage on kinematical air flow characteristics, are presented. The elaborated mathematical model will make it possible to realize - in the future - simulative investigations of gas-dynamic processes taking place in a compressor fitted with controllable guide vanes.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Song, Kang, Devesh Upadhyay, and Hui Xie. "A physics-based turbocharger model for automotive diesel engine control applications." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 7 (2018): 1667–86. http://dx.doi.org/10.1177/0954407018770569.

Texte intégral
Résumé :
Control-oriented models of turbocharger processes such as the compressor mass flow rate, the compressor power, and the variable geometry turbine power are presented. In a departure from approaches that rely on ad hoc empirical relationships and/or supplier provided performance maps, models based on turbomachinery physics and known geometries are attempted. The compressor power model is developed using Euler’s equations of turbomachinery, where the gas velocity exiting the rotor is estimated from an empirically identified correlation for the ratio between the radial and tangential components of the gas velocity. The compressor mass flow rate is modeled based on mass conservation, by approximating the compressor as an adiabatic converging-diverging nozzle with compressible fluid driven by external work input from the compressor wheel. The variable geometry turbine power is developed with Euler’s equations, where the turbine exit swirl and the gas acceleration in the vaneless space are neglected. The gas flow direction into the turbine rotor is assumed to align with the orientation of the variable geometry turbine vane. The gas exit velocity is calculated, similar to the compressor, based on an empirical model for the ratio between the turbine rotor inlet and exit velocities. A power loss model is also proposed that allows proper accounting of power transfer between the turbine and compressor. Model validation against experimental data is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Whitfield, A., and A. H. Abdullah. "The Performance of a Centrifugal Compressor With High Inlet Prewhirl." Journal of Turbomachinery 120, no. 3 (1998): 487–93. http://dx.doi.org/10.1115/1.2841744.

Texte intégral
Résumé :
The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or to switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40 percent.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Whitfield, A., and A. J. Sutton. "The Effect of Vaneless Diffuser Geometry on the Surge Margin of Turbocharger Compressors." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 203, no. 2 (1989): 91–98. http://dx.doi.org/10.1243/pime_proc_1989_203_154_02.

Texte intégral
Résumé :
A study into the effect of two methods of changing the geometry of a vaneless diffuser on the performance of the compressor of a road haulage diesel engine turbocharger is described. The development of compressor variable geometry will enable the full potential of variable geometry turbines to be realized. This will give a more flexible power unit which will provide, for example, better low-speed torque and hence a smaller gearbox, and shorter journey times or larger payloads than are currently the practice. The disadvantages are added complexity and cost in the relatively simple turbocharger, and the need for an engine management system. The latter is currently being implemented on many vehicles to meet tight emissions regulations in Europe and elsewhere, and is thus not a drawback limited to variable geometry turbocharging. A compressor test facility, including appropriate instrumentation and a computer-based data-acquisition system, was constructed with the specific aim of investigating the unstable flow regime prior to and including surge. Alternative fixed vaneless diffuser geometries were designed to simulate a variable geometry diffuser which could be achieved through a flexing diffuser wall and a sliding throttle ring. Both the converging wall and throttle ring arrangement moved the peak pressure ratio to lower flowrates, and at the near surge flowrates (where the device would be introduced, when operating in a variable geometry mode) improvements in both pressure ratio and efficiency are shown. While the converging wall concept exhibited slightly better aerodynamic performance than the throttle ring, it has implementation difficulties with respect to material integrity under continuous flexing when developed to a fully variable geometry device. The simplicity of the sliding throttle ring makes it a more viable proposition. Prototype variable geometry (VG) devices have been constructed with a view to further rig and engine testing.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Variable geometry compressor"

1

Sutton, Anthony James. "Experimental evaluation of compressor variable geometry in a turbocharger compressor." Thesis, University of Bath, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289813.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wöhr, Michael, Elias Chebli, Markus Müller, Hans Zellbeck, Johannes Leweux, and Andreas Gorbach. "Development of a turbocharger compressor with variable geometry for heavy-duty engines." Sage, 2015. https://tud.qucosa.de/id/qucosa%3A35552.

Texte intégral
Résumé :
This article describes the first development phase of a centrifugal compressor with variable geometry which is designed to match the needs of future heavy-duty engines. Requirements of truck engines are analyzed, and their impact on the properties of the compressor map is evaluated in order to identify the most suitable kind of variable geometry. Our approach utilizes the transformation of engine data into pressure ratio and mass flow coordinates that can be displayed and interpreted using compressor maps. One-dimensional and three-dimensional computational fluid dynamics fluid flow calculations are used to identify loss mechanisms and constraints of fixed geometry compressors. Linking engine goals and aerodynamic objectives yields specific recommendations on the implementation of the variable geometry compressor.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wöhr, Michael, Elias Chebli, Markus Müller, Hans Zellbeck, Johannes Leweux, and Andreas Gorbach. "Development of a turbocharger compressor with variable geometry for heavy-duty engines." Sage, 2014. https://publish.fid-move.qucosa.de/id/qucosa%3A38444.

Texte intégral
Résumé :
This article describes the first development phase of a centrifugal compressor with variable geometry which is designed to match the needs of future heavy-duty engines. Requirements of truck engines are analyzed, and their impact on the properties of the compressor map is evaluated in order to identify the most suitable kind of variable geometry. Our approach utilizes the transformation of engine data into pressure ratio and mass flow coordinates that can be displayed and interpreted using compressor maps. One-dimensional and three-dimensional computational fluid dynamics fluid flow calculations are used to identify loss mechanisms and constraints of fixed geometry compressors. Linking engine goals and aerodynamic objectives yields specific recommendations on the implementation of the variable geometry compressor.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Morgan, Gwyn. "The Application of Multi-Agent Systems to the Design of an Intelligent Geometry Compressor." Thesis, Brunel University, 2002. http://bura.brunel.ac.uk/handle/2438/728.

Texte intégral
Résumé :
In this research, a multi-agent approach was applied to the design of a large axial flow compressor in order to optimise performance and to greatly enlarge the useful operating range of the machine. In this design a number of distributed software/hardware agents co-operate to control the internal geometry of the machine and thereby optimise the compressor characteristics in response to changes in flow conditions. The resulting machine is termed an ‘Intelligent Geometry Compressor’ (IGC). The design of a multi-agent system for the IGC was carried out in three main phases, each supported by computer simulation. In the first phase a steady-state model of the IGC was developed in which global control of the variable geometry is achieved by a single agent. This was used to help identify specific requirements for performance and the underlying parametric relationships. The subsequent phases incorporated additional agents into the machine design to meet these requirements. Initially, agents were deployed to optimise the settings of individual rows of stator vanes. In the final phase, the MAS was extended to incorporate agents into the machine design for the control of individual stator vanes. Simulation results were obtained which demonstrate the effectiveness of the intelligent geometry compressor in achieving delivery pressure regulation over a wide range of steady-state operating conditions whilst optimising overall machine efficiency and avoiding the occurrence of stall. Some of the implications for the physical design of an IGC arising from the MAS concept were briefly considered. The experience of the research supported by the specific results and observations from many simulation trials, led to the conclusion that multi-agent systems can provide an effective and novel alternative approach to the design of an intelligent geometry compressor. By implication, this conclusion may be extended to other intelligent machine applications where similar opportunity to apply a distributed control solution exists.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wöhr, Michael. "Entwicklung eines variablen Turbolader-Verdichters für schwere Nutzfahrzeugmotoren." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215989.

Texte intégral
Résumé :
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen. In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen. Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand. Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich. Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden. Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität<br>Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability. In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements. The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range. The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%. The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wöhr, Michael. "Entwicklung eines variablen Turbolader-Verdichters für schwere Nutzfahrzeugmotoren." Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A30063.

Texte intégral
Résumé :
Die Entwicklung schwerer Nutzfahrzeugmotoren unterliegt dem Zielkonflikt zwischen möglichst geringen Betriebskosten, hoher Leistung und der Einhaltung von Emissionsvorschriften. Bezüglich der Auslegung der Verdichterstufe des Abgasturboladers resultiert dies in einem Kompromiss zwischen Kennfeldbreite und den Wirkungsgraden im Nennpunkt sowie im Hauptfahrbereich. In der vorliegenden wissenschaftlichen Publikation wird untersucht, ob mit Hilfe einer geometrischen Verstellbarkeit des Verdichters eine bessere Lösung für das anspruchsvolle Anforderungsprofil gefunden werden kann. Das Ziel ist eine Reduktion des Kraftstoffverbrauchs eines 12,8l NFZ-Dieselmotors im schweren Fernverkehr, ohne dass hierbei Abstriche bezüglich weiterer Leistungsmerkmale der Verdichterstufe in Kauf genommen werden müssen. In einem ersten Schritt wird hierzu mit Hilfe der Auswertung von Lastkollektivdaten der für den Kraftstoffverbrauch relevante Betriebsbereich der Basis-Verdichterstufe identifiziert. Dieser befindet sich bei vergleichsweise geringen Massenströmen und hohen Totaldruckverhältnissen in der Nähe der Volllast-Schlucklinie im Verdichterkennfeld. Die Auswertung von ein- und dreidimensionalen Strömungssimulationen führt zur Erkenntnis, dass die hohen Tangentialgeschwindigkeiten im unbeschaufelten Diffusor ausschlagge- bend sind für die Strömungsverluste innerhalb der Verdichterstufe im Hauptfahrbereich. Eine Möglichkeit die Geschwindigkeitskomponente in Umfangsrichtung zu reduzieren, ist die Verwendung eines beschaufelten Diffusors. Zur Überprüfung des Potentials werden im Rahmen einer Parameterstudie 47 unterschiedliche Nachleitgitter im Diffusor der Basis-Verdichterstufe am Heißgasprüfstand untersucht. Es stellt sich heraus, dass durch den Einsatz einer Nachleitbeschaufelung der Verdichterwirkungsgrad um bis zu 8 Prozentpunkte verbessert werden kann, die Kennfeldbreite jedoch nicht ausreicht, um die motorischen Anforderungen bezüglich der Pumpstabilität oder der Bremsleistung zu erfüllen. Resultierend aus diesen Erkenntnissen werden drei variable Verdichter entwickelt, mit dem Ziel, den Wirkungsgradvorteil beschaufelter Diffusoren mittels einer geometrischen Verstellbarkeit für den schweren Nutzfahrzeugmotor nutzbar zu machen. Die Bewertung hinsichtlich der Ziele und Anforderungen erfolgt anhand von Versuchen am Heißgas- sowie Vollmotorenprüfstand. Die Variabilität mit der geringsten Komplexität ist die Kombination aus starrem Nachleitgitter und Schubumluftventil. Das System zeichnet sich dadurch aus, dass Strömungsabrisse im Bereich des Nachleitgitters durch Aktivieren des Schubumluftventils und somit Öffnen eines Rezirkulationskanals im Verdichtergehäuse in pumpkritischen Situationen vermieden werden können. Der Verzicht auf bewegliche Teile im Diffusor resultiert in der höchsten Reduktion des Kraftstoffverbrauchs um 0,6 − 1,4% im Hauptfahrbereich. Der Doppeldiffusor besitzt zwei separate Strömungskanäle unterschiedlicher Geometrie, die im Betrieb durch eine axiale Verschiebung mit Druckluft aktiviert werden können. Dieses völlig neuartige Konzept ermöglicht es, die Auslegungsziele auf zwei Diffusoren aufzuteilen und somit für jede Kennfeldhälfte die jeweils optimale Schaufelgeometrie auszuwählen. Mit dieser Variabilität kann die Einspritzmenge im Hauptfahrbereich um 0,5 − 0,8 Prozent gesenkt werden. Das System mit der höchsten Komplexität ist der Verdichter mit rotierbarer Nachleitbeschaufelung. Über einen elektronischen Steller können die Anstellwinkel und Halsquerschnitte in jedem Betriebspunkt den Anströmbedingungen angepasst werden, um den jeweils bestmöglichen Wirkungsgrad zu erhalten. Aufgrund der anspruchsvollen geometrischen Zwangsbedingungen bei der Auswahl der Schaufelgeometrie besitzt der Dreh- schaufler mit 0,3−0,6% das geringste Potential zur Verbesserung der Kraftstoffsparsamkeit, erzielt jedoch das beste Ergebnis bezüglich der Bremsleistung und der Pumpstabilität.:1 Einleitung 1.1 Einführung 1.2 Stand der Technik 1.3 Zielsetzung 2 Grundlagen 2.1 Der schwere Nutzfahrzeugmotor 2.1.1 Aufbau 2.1.2 Kenngrößen 2.1.3 Motorbremse 2.2 Der Turbolader-Radialverdichter 2.2.1 Systembeschreibung 2.2.2 Definition von Kenngrößen 2.2.3 ThermodynamischeBeschreibung 2.3 Thermodynamik des Aufladesystems 2.3.1 Stationäre Lastkurven im Verdichterkennfeld 2.3.2 Grenzwerte im Stationärbetrieb 2.3.3 Transientverhalten 3 Methodik 3.1 Lösungsweg 3.2 Lastkollektivauswertung 3.3 Parametrisiertes Diffusormodell 3.3.1 Geometrischer Aufbau 3.3.2 Auslegungsgrößen 3.3.3 Parameterstudie 3.4 Simulation 3.4.1 1D-Strömungssimulation in Diffusor und Volute 3.4.2 3D-Strömungssimulation der Verdichterstufe 3.4.3 Motorprozesssimulation 3.5 Heißgasprüfstand 3.5.1 Kennfeldvermessung 3.5.2 Aerodynamikmessung 3.5.3 Verkokungsanfälligkeit 3.6 Motorprüfstand 3.6.1 Aufbau 3.6.2 Randbedingungen 3.6.3 Akustikmessung 4 Ergebnisse 4.1 Validierung 4.1.1 Strömungszustand am Verdichterradaustritt 4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor 4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor 4.2 Verlustanalyse Basisverdichter 4.2.1 Auswertung der Lastkollektive 4.2.2 Aerodynamische Verlustanalyse 4.2.3 Strömungsmechanik im Diffusor 4.3 Parameterstudie beschaufelter Diffusoren 4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld 4.3.2 Anforderungen des schweren Nutzfahrzeugmotors 4.4 Aerodynamik beschaufelter Diffusoren 4.4.1 Auslegungskriterien 4.5 Verkokung beschaufelter Diffusoren 5 Variable Verdichter 5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil 5.1.1 Auslegung und Konstruktion 5.1.2 Heißgasprüfstand 5.2 VSVC-Doppeldiffusor 5.2.1 Auslegung und Konstruktion 5.2.2 Heißgasprüfstand 5.3 VPVC-RotierbareSchaufeln 5.3.1 Auslegung und Konstruktion 5.3.2 Heißgasprüfstand 5.4 Verhalten variabler Verdichter am schweren NFZ-Motor 5.4.1 Volllast 5.4.2 Lastvariation 5.4.3 DynamischesAnsprechverhalten 5.4.4 Low-End Torque 5.4.5 Dynamische Pumpstabilität 5.4.6 Bremsbetrieb 5.4.7 Ansteuerung 5.4.8 Akustik 5.5 Übersicht 6 Zusammenfassung und Ausblick 7 Anhang Literaturverzeichnis<br>Reducing the total costs of ownership, achieving the rated engine power and compliance with exhaust-emission legislation are competing goals regarding the development of heavy duty engines. This leads to demanding requirements for the aerodynamic design of the turbocharger compressor stage such as high efficiencies at various operating points and a broad map width. The aim of the present doctoral thesis is to investigate the potential of a compressor with variable geometry in order to obtain a better compromise between efficiency and compressor map width for the purpose of increasing fuel economy without sacrifices concerning the rated power, engine brake performance or surge stability. In a first step, the evaluation of load cycles yields operating points on which the fuel consumption is heavily dependent. Results of 1D- and 3D fluid flow simulations show that the high tangential velocity in the vaneless diffusor is the main cause for the reduction of compressor efficiency in the main driving range. A parameter study containing 47 different geometries is conducted at a hot gas test rig in order to examine the potential of vaned diffusers regarding the reduction of the tangential velocity component. It can be seen that by introducing diffuser vanes compressor efficiency can be increased by up to 8 percent. The narrow map width however prevents the use of a fixed geometry for heavy duty engines. Based on those results three variable geometry compressors are developed with the goal of maintaining the efficiency benefit of vaned diffusers while increasing the map width by adjustable geometric features. The evaluation of the variable compressor systems is based on hot gas and engine test bench measurements. The variable compressor system with the lowest complexity utilizes a recirculation valve in the compressor housing in combination with a fixed geometry vaned diffuser in order to improve the surge margin for a short period of time at a sudden load drop. The abandonment of functional gaps in the diffuser leads to the highest improvement of fuel economy of 0,6 − 1,4% in the main driving range. The compressor with stacked diffuser vanes has two separate flow channels in the diffuser. During engine operation only one vaned diffuser geometry is active. The axial movement is performed via pressure chambers in the compressor and bearing housing. The two diffuser geometries are either optimized for high or low mass flows. This way the fuel consumption in the main driving range can be reduced by 0,5 − 0,8%. The compressor with pivoting vanes in the diffuser has the highest complexity of all systems. With the aid of an electronic actuator the vane inlet angle and throat area can be adjusted to the impeller outlet flow conditions at each operating point. As a consequence the pivoting vanes compressor achieves the best results regarding engine brake performance and surge stability. The fuel economy in the main driving range can be improved by 0,3 − 0,6%. Higher benefits are prevented by demanding geometric constraints in order to ensure the rotatability of the vanes and to prevent vibrations of the impeller blades.:1 Einleitung 1.1 Einführung 1.2 Stand der Technik 1.3 Zielsetzung 2 Grundlagen 2.1 Der schwere Nutzfahrzeugmotor 2.1.1 Aufbau 2.1.2 Kenngrößen 2.1.3 Motorbremse 2.2 Der Turbolader-Radialverdichter 2.2.1 Systembeschreibung 2.2.2 Definition von Kenngrößen 2.2.3 ThermodynamischeBeschreibung 2.3 Thermodynamik des Aufladesystems 2.3.1 Stationäre Lastkurven im Verdichterkennfeld 2.3.2 Grenzwerte im Stationärbetrieb 2.3.3 Transientverhalten 3 Methodik 3.1 Lösungsweg 3.2 Lastkollektivauswertung 3.3 Parametrisiertes Diffusormodell 3.3.1 Geometrischer Aufbau 3.3.2 Auslegungsgrößen 3.3.3 Parameterstudie 3.4 Simulation 3.4.1 1D-Strömungssimulation in Diffusor und Volute 3.4.2 3D-Strömungssimulation der Verdichterstufe 3.4.3 Motorprozesssimulation 3.5 Heißgasprüfstand 3.5.1 Kennfeldvermessung 3.5.2 Aerodynamikmessung 3.5.3 Verkokungsanfälligkeit 3.6 Motorprüfstand 3.6.1 Aufbau 3.6.2 Randbedingungen 3.6.3 Akustikmessung 4 Ergebnisse 4.1 Validierung 4.1.1 Strömungszustand am Verdichterradaustritt 4.1.2 Simulation der Verdichterstufe mit unbeschaufeltem Diffusor 4.1.3 Simulation der Verdichterstufe mit beschaufeltem Diffusor 4.2 Verlustanalyse Basisverdichter 4.2.1 Auswertung der Lastkollektive 4.2.2 Aerodynamische Verlustanalyse 4.2.3 Strömungsmechanik im Diffusor 4.3 Parameterstudie beschaufelter Diffusoren 4.3.1 Einfluss von Nachleitgittern auf das Verdichterkennfeld 4.3.2 Anforderungen des schweren Nutzfahrzeugmotors 4.4 Aerodynamik beschaufelter Diffusoren 4.4.1 Auslegungskriterien 4.5 Verkokung beschaufelter Diffusoren 5 Variable Verdichter 5.1 VRVC - Starres Nachleitgitter mit Schubumluftventil 5.1.1 Auslegung und Konstruktion 5.1.2 Heißgasprüfstand 5.2 VSVC-Doppeldiffusor 5.2.1 Auslegung und Konstruktion 5.2.2 Heißgasprüfstand 5.3 VPVC-RotierbareSchaufeln 5.3.1 Auslegung und Konstruktion 5.3.2 Heißgasprüfstand 5.4 Verhalten variabler Verdichter am schweren NFZ-Motor 5.4.1 Volllast 5.4.2 Lastvariation 5.4.3 DynamischesAnsprechverhalten 5.4.4 Low-End Torque 5.4.5 Dynamische Pumpstabilität 5.4.6 Bremsbetrieb 5.4.7 Ansteuerung 5.4.8 Akustik 5.5 Übersicht 6 Zusammenfassung und Ausblick 7 Anhang Literaturverzeichnis
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kuo, Pi-Chen, and 郭珌賑. "Geometric Modeling and Analysis of Wobble Plate Type Compressor with Variable Capacity." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/87566010352848345263.

Texte intégral
Résumé :
碩士<br>正修科技大學<br>機電工程研究所<br>94<br>The compressor plays an important role in the automotive air conditioning system. The components in the compressor have to be made with great precision and the tasks for producing are complicated. This thesis presents a systematic, computerized process to design and analysis the wobble plate type compressors with variable capacity. Firstly, in order to avoid patent infringement, the patent retrieval, collecting and classifying in accordance with the mechanism and the function are implemented. Based on the technology of reverse engineering and the CAD/CAM software, the geometric model and the assembly of the components are constructed. The interference check between the built components can be performed to provide the exactness in the design stage. Use the techniques of rapid prototyping build the prototype of the reciprocating compressors, so that the results of product design can be conformed. In addition, the kinematic model of the reciprocating mechanism is established by using homogeneous coordinate transformation. The mechanism simulation of a solid model was executed to verify the derived results. Through the presented method and technology, the design capability can be increased and the time-to-exploitation can be shortened efficiently.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Variable geometry compressor"

1

Zhang, Kunyuan. "Concept of Hypersonic Adaptive Variable Geometric Curved Compression Inlet." In Advanced Topics in Science and Technology in China. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0727-4_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Grigoriadis, P., S. Müller, A. Benz, and M. Sens. "Variable trim compressor – a new approach to variable compressor geometry." In 10th International Conference on Turbochargers and Turbocharging. Elsevier, 2012. http://dx.doi.org/10.1533/9780857096135.3a.111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kovacevic, A., S. Rane, and N. Stosic. "Screw compressor with variable geometry rotors - analysis of designs by CFD." In Fluid Machinery Congress 6-7 October 2014. Elsevier, 2014. http://dx.doi.org/10.1533/9780081001080.4.91.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rane, S., A. Kovacevic, N. Stosic, and M. Kethidi. "CFD grid generation and analysis of screw compressor with variable geometry rotors." In 8th International Conference on Compressors and their Systems. Elsevier, 2013. http://dx.doi.org/10.1533/9781782421702.11.601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Silva, O., J. Tomita, C. Bringhenti, and D. Cavalca. "Hybrid optimization algorithm applied on multistage axial compressor performance calculations with variable geometry." In Engineering Optimization 2014. CRC Press, 2014. http://dx.doi.org/10.1201/b17488-56.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Variable geometry compressor"

1

Gallar, L., M. Arias, V. Pachidis, and P. Pilidis. "Compressor Variable Geometry Schedule Optimisation Using Genetic Algorithms." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-60049.

Texte intégral
Résumé :
Variable geometry blade rows in axial compressors are devised to fulfil different requirements. Main objectives include their role as a “part speed crutch” to push the front stages out of surge at low spool speeds, modulation of the power output in industrial machines — given the fact that the spool needs to run at synchronous speed with the electric generator frequency — and they can also be re-staggered to attain a modified capacity (usually upflowed) of the same baseline compressor. The operating schedule of the variable vanes is typically obtained from expensive and time consuming performance rig tests in which a large number of possible combinations are compared. In principle, the final choice is dictated by the pursuit of high efficiency at high rotational speeds and increased surge margin at low speeds where large excursions away from the design point are expected. The aim of this work is to integrate a validated genetic algorithm optimiser within an industry proprietary mean line compressor performance prediction code to maximise the machine efficiency while keeping an adequate user-defined value of the surge margin. In so doing, an optimised variable geometry schedule is derived, together with a modified range of rotational speeds for each given operating point. Nevertheless, aware of the detrimental consequences to the whole engine performance that the new arrangement can cause, the whole engine response for the new settings has been investigated. In this regard and to a first order, the working line on the compressor map is considered unaffected by the setting of the variable vanes and the effect of the spool speed variation on the turbine operation is accounted for by a reduction in turbine efficiency proportional to any fall in the shaft speed. Results for a state of the art eight stage compressor show a marked improvement for the coupled compressor-turbine efficiency particularly at low spool speeds for a sensible value of the surge margin. Free from the surge margin constraint the efficiency is further increased at the expense of a hindered compressor operational stability. The work is intended to continue with the incorporation of bleeds and power off take in the calculations for the sake of a greater applicability of the tool.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Batson, B. W. "Antisurge Control for Variable Geometry Compressors." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-389.

Texte intégral
Résumé :
Compressors used for industrial applications are sometimes fitted with some form of variable geometry. Centrifugal compressors may have adjustable inlet guide vanes on one or multiple stages, or diffuser guide vanes at the discharge of the compressor. Axial compressors often have variable inlet guide vanes or adjustable stators. Such variable geometry compressors are becoming more common in the petroleum and chemical industries. For many variable geometry compressors (but not all), the boundary between the stable operating region and surge is a surface, not just a curve. In this paper, we discuss which forms of variable geometry result in a surge limit curve and which forms spread out into a surface. We describe some methods for determining the location of the operating point relative to the surge limit. An example is included showing actual surge points as found in the field. Surge testing to determine the complete surge limit surface is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tange, Hiroshi, Nobuyuki Ikeya, Masahiro Takanashi, and Takashi Hokari. "Variable Geometry Diffuser of Turbocharger Compressor for Passenger Vehicles." In SAE 2003 World Congress & Exhibition. SAE International, 2003. http://dx.doi.org/10.4271/2003-01-0051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pulpeiro Gonzalez, Jorge, and Carrie Hall. "Equation-Based Compressor and Turbine Modeling for Variable Geometry Turbochargers." In WCX World Congress Experience. SAE International, 2018. http://dx.doi.org/10.4271/2018-01-0966.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Reitenbach, S., M. Schnös, R. G. Becker, and T. Otten. "Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42832.

Texte intégral
Résumé :
Variable geometry blade rows are a common instrument to avoid compressor instabilities which occur especially at low- and full-speed operation of gas turbines. The operating settings of variable stator vanes (VSVs) are typically obtained from expensive and time consuming performance rig tests and are not known during the early design phase of a gas turbine. During preliminary design of the overall engine it is common practice to use default component characteristics based on considerable engineering experience. These can deviate substantially at off-design and often do not properly account for the impact of changes in component geometry. As a solution, multi-fidelity simulation often referred to as zooming or variable complexity analysis is applied. This proceeding facilitates a transfer of single component performance characteristics obtained in mid- or high-fidelity analysis to a full gas turbine system analysis based on lower resolution level. The purpose of this study is to present a multidisciplinary numerical optimization methodology to define ideal blade row staggering of variable compressor stator vanes during the early preliminary design phase using multi-fidelity simulation. The objective of the resultant multi-dimensional constraint optimization is to find the best solution for the entire gas turbine system for a set of discrete operating points. For the assessment a generic turbofan engine model is designed by taking into account top level engine requirements from an assumed airframe and flight mission scenario. Based on the performance calculation a full 3-D axial multistage high pressure compressor (HPC) is designed. The assumed design considerations are summarized and the modelling techniques are presented. The optimization of VSV staggering mentioned above is carried out by re-staggering the variable geometry blade rows of the high-fidelity HPC and run a full 2-dimensional through-flow calculation. Results are then automatically transferred to the 0-dimensional engine model to calculate the engine overall performance. A Pareto optimized blade row staggering is found by taking into account the surge margin and the specific fuel consumption of the entire engine system as objective functions of the optimization process. Simultaneously several constraints such as DeHaller numbers and diffusion factors are considered. The optimization process chain and the tool coupling are summarized and described in detail. The resulting VSV staggering for a set of discrete operating points is shown.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Suzuki, Kentaro, Fanzhou Zhao, and Mehdi Vahdati. "Numerical Analysis of Flutter in Variable Geometry Compressors." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16093.

Texte intégral
Résumé :
Abstract Aeroelastic behaviour of a transonic rotor in a newly designed 1.5 stage compressor with variable geometry is studied numerically in this paper. The stage is intended to be the front part of a one-shafted large frame industrial gas turbine (IGT) compressor. The compressor was designed using open-source software MULTALL and numerical computations were performed using the three-dimensional aeroelasticity code AU3d, which has been tested and validated for many aeroelastic test cases over the past 25 years. Flutter analysis for the 1F mode was performed at various design and off-design operating conditions which are typically experienced in IGT (varied inlet temperature and inlet guide vane angle). Although in all the cases the rotor remained stable, clear trends in aerodynamic damping were observed, which can be explained by shock position. In the last phase, the effects of increased tip gap size on the flutter stability were studied. The increase in tip clearance did not result in flutter; unsteady computations without blade motion showed a tip rotating instability with 11 cells travelling at 84% of the shaft speed in the stationary frame. Due to the frequency proximity between the rotating instability and blade natural vibration mode, large amplitude displacement driven by lock-in was observed in the fluid-structure coupled simulation. It was concluded that this type of aeroelastic instability which can be mistaken for flutter is the main threat for this IGT compressor.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fan, Gang, Kang Chen, Shaoxiong Zheng, et al. "Design and Performance Analysis of a Supercritical CO2 Centrifugal Compressor With Variable Geometry." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59723.

Texte intégral
Résumé :
Abstract The supercritical carbon dioxide (SCO2) Brayton cycle is one of the most promising power cycles due to its high efficiency, compactness and environmentally friendliness. The centrifugal compressor is a key component of small and medium SCO2 Brayton cycles, and its efficiency has a significant impact on the cycle efficiency. Since the required electric load of power cycles always fluctuates over the year, the SCO2 compressor will operate away from its design point and the narrow stable operating range of a compressor is always a restriction. In this paper, the variable-geometry method, which refers to the combination of a variable inlet-guide-vanes and variable diffuser vanes is proposed for the operating range extension of SCO2 compressors. A set of one-dimensional (1D) loss correlations has been found to accurately predict various losses of the SCO2 compressor components. Based on the 1D thermodynamic model, two programs with internal MATLAB codes coupled with the NIST REFPROP database have been developed for preliminary optimization design and off-design performance predictions of the variable geometry SCO2 compressor. The contributions from the variable-inlet prewhirl and variable diffuser vanes to the shifts of the surge line and choke line are discussed in this paper. The results show the variable-geometry SCO2 compressor has a superior performance at off-design conditions and a wider operating range.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Barbosa, João Roberto, Cleverson Bringhenti, and Jesuíno Takachi Tomita. "Gas Turbine Transients With Controlled Variable Geometry." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69836.

Texte intégral
Résumé :
A small 5-kN thrust gas turbine, designed and manufactured having in mind a thorough source of validation data, serves as basis for the study. The engine is an uncooled turbine, 5:1 pressure ratio axial flow compressor, delivering 8.1 kg/s air mass flow, whose control is made by a FADEC. Cold runs of the jet engine version have already been completed. The engine characteristics are being developed using the technology indicated in the paper. Accelerations and decelerations from idle to full power in a prescribed time interval and positive surge margin are the limitations imposed to the control system. In order to accomplish such requirements, a proportional, integral and derivative (PID) has been implemented to control the variable geometry transients, which proved to drive the engine to the required operating points. Compressor surge is avoided during accelerations or decelerations, imposing operation limits to the surge margin. In order to simulate a jet engine under transient operation, use was made of high-fidelity in-house developed software. The results presented in the paper are related to the compressor inlet guide vane (VIGV) transients. The engine transient calculations were predicted with the IGV settings varying with time, and the results are being used for the initial calibration of the transfer functions for the real time control.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Junqiang Zhou, Lisa Fiorentini, Fabio Chiara, and Marcello Canova. "Surge index and compressor efficiency estimation for Diesel engines with variable geometry compressor system." In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Herbst, Fabian, and Peter Eilts. "Experimental Investigation of Variable Geometry Compressor for Highly Boosted Gasoline Engines." In SAE 2015 World Congress & Exhibition. SAE International, 2015. http://dx.doi.org/10.4271/2015-01-1289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!