Littérature scientifique sur le sujet « Variable prediction horizons »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Variable prediction horizons ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Variable prediction horizons"
Alamaniotis, Miltiadis, et Georgios Karagiannis. « Integration of Gaussian Processes and Particle Swarm Optimization for Very-Short Term Wind Speed Forecasting in Smart Power ». International Journal of Monitoring and Surveillance Technologies Research 5, no 3 (juillet 2017) : 1–14. http://dx.doi.org/10.4018/ijmstr.2017070101.
Texte intégralAbduljabbar, Rusul L., Hussein Dia et Pei-Wei Tsai. « Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction ». Journal of Advanced Transportation 2021 (26 mars 2021) : 1–16. http://dx.doi.org/10.1155/2021/5589075.
Texte intégralMontaser, Eslam, José-Luis Díez et Jorge Bondia. « Glucose Prediction under Variable-Length Time-Stamped Daily Events : A Seasonal Stochastic Local Modeling Framework ». Sensors 21, no 9 (4 mai 2021) : 3188. http://dx.doi.org/10.3390/s21093188.
Texte intégralFaria, Álvaro José Gomes de, Sérgio Henrique Godinho Silva, Leônidas Carrijo Azevedo Melo, Renata Andrade, Marcelo Mancini, Luiz Felipe Mesquita, Anita Fernanda dos Santos Teixeira, Luiz Roberto Guimarães Guilherme et Nilton Curi. « Soils of the Brazilian Coastal Plains biome : prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models ». Soil Research 58, no 7 (2020) : 683. http://dx.doi.org/10.1071/sr20136.
Texte intégralGoldstein, Benjamin A., Michael J. Pencina, Maria E. Montez-Rath et Wolfgang C. Winkelmayer. « Predicting mortality over different time horizons : which data elements are needed ? » Journal of the American Medical Informatics Association 24, no 1 (29 juin 2016) : 176–81. http://dx.doi.org/10.1093/jamia/ocw057.
Texte intégralLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou et Pau Herrero. « Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal ». Sensors 19, no 19 (8 octobre 2019) : 4338. http://dx.doi.org/10.3390/s19194338.
Texte intégralAlmarzooqi, Ameera M., Maher Maalouf, Tarek H. M. El-Fouly, Vasileios E. Katzourakis, Mohamed S. El Moursi et Constantinos V. Chrysikopoulos. « A hybrid machine-learning model for solar irradiance forecasting ». Clean Energy 8, no 1 (10 janvier 2024) : 100–110. http://dx.doi.org/10.1093/ce/zkad075.
Texte intégralFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby et Juan José Vinagre Díaz. « Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction ». Sensors 22, no 12 (17 juin 2022) : 4565. http://dx.doi.org/10.3390/s22124565.
Texte intégralWang, Haowei, Kin On Kwok et Steven Riley. « Forecasting influenza incidence as an ordinal variable using machine learning ». Wellcome Open Research 9 (8 janvier 2024) : 11. http://dx.doi.org/10.12688/wellcomeopenres.19599.1.
Texte intégralZjavka, Ladislav. « Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation ». Energies 14, no 22 (12 novembre 2021) : 7581. http://dx.doi.org/10.3390/en14227581.
Texte intégralThèses sur le sujet "Variable prediction horizons"
Amor, Yasmine. « Ιntelligent apprοach fοr trafic cοngestiοn predictiοn ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR129.
Texte intégralTraffic congestion presents a critical challenge to urban areas, as the volume of vehicles continues to grow faster than the system’s overall capacity. This growth impacts economic activity, environmental sustainability, and overall quality of life. Although strategies for mitigating traffic congestion have seen improvements over the past few decades, many cities still struggle to manage it effectively. While various models have been developed to tackle this issue, existing approaches often fall short in providing real-time, localized predictions that can adapt to complex and dynamic traffic conditions. Most rely on fixed prediction horizons and lack the intelligent infrastructure needed for flexibility. This thesis addresses these gaps by proposing an intelligent, decentralized, infrastructure-based approach for traffic congestion estimation and prediction.We start by studying Traffic Estimation. We examine the possible congestion measures and data sources required for different contexts that may be studied. We establish a three-dimensional relationship between these axes. A rule-based system is developed to assist researchers and traffic operators in recommending the most appropriate congestion measures based on the specific context under study. We then proceed to Traffic Prediction, introducing our DECentralized COngestion esTimation and pRediction model using Intelligent Variable Message Signs (DECOTRIVMS). This infrastructure-based model employs intelligent Variable Message Signs (VMSs) to collect real-time traffic data and provide short-term congestion predictions with variable prediction horizons.We use Graph Attention Networks (GATs) due to their ability to capture complex relationships and handle graph-structured data. They are well-suited for modeling interactions between different road segments. In addition to GATs, we employ online learning methods, specifically, Stochastic Gradient Descent (SGD) and ADAptive GRAdient Descent (ADAGRAD). While these methods have been successfully used in various other domains, their application in traffic congestion prediction remains under-explored. In our thesis, we aim to bridge that gap by exploring their effectiveness within the context of real-time traffic congestion forecasting.Finally, we validate our model’s effectiveness through two case studies conducted in Muscat, Oman, and Rouen, France. A comprehensive comparative analysis is performed, evaluating various prediction techniques, including GATs, Graph Convolutional Networks (GCNs), SGD and ADAGRAD. The achieved results underscore the potential of DECOTRIVMS, demonstrating its potential for accurate and effective traffic congestion prediction across diverse urban contexts
Shekhar, Rohan Chandra. « Variable horizon model predictive control : robustness and optimality ». Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244210.
Texte intégralChapitres de livres sur le sujet "Variable prediction horizons"
Huisman, Mischa, et Erjen Lefeber. « Online Motion Planning for All-Wheel Drive Autonomous Race Cars ». Dans Lecture Notes in Mechanical Engineering, 185–92. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_27.
Texte intégralHatanaka, Takeshi, Teruki Yamada, Masayuki Fujita, Shigeru Morimoto et Masayuki Okamoto. « Explicit Receding Horizon Control of Automobiles with Continuously Variable Transmissions ». Dans Nonlinear Model Predictive Control, 561–69. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_46.
Texte intégralBertipaglia, Alberto, Mohsen Alirezaei, Riender Happee et Barys Shyrokau. « A Learning-Based Model Predictive Contouring Control for Vehicle Evasive Manoeuvres ». Dans Lecture Notes in Mechanical Engineering, 632–38. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_89.
Texte intégralDe Nicolao, G., et R. Scattolini. « Properties of MBPC Algorithms ». Dans Advances in Model-Based Predictive Control, 103–69. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198562924.003.0002.
Texte intégralLima, Rodrigo de Souza, Leonardo Azevedo Scárdua et Gustavo Maia de Almeida. « Predicting temperatures inside a steel slab reheating furnace using Deep Learning ». Dans A LOOK AT DEVELOPMENT. Seven Editora, 2023. http://dx.doi.org/10.56238/alookdevelopv1-016.
Texte intégral« Cash Management ». Dans Decision and Prediction Analysis Powered With Operations Research, 209–21. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-4179-7.ch011.
Texte intégralMartínez, Blanca, Javier Sanchis et Sergio Garcia-Nieto. « A model independent constrained predictive control for the Furuta Pendulum ». Dans XLIV Jornadas de Automática : libro de actas : Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura, 6, 7 y 8 de septiembre de 2023, Zaragoza, 323–28. 2023e éd. Servizo de Publicacións. Universidade da Coruña, 2023. http://dx.doi.org/10.17979/spudc.9788497498609.323.
Texte intégralBandyopadhyay, Arindam. « Matrix Algebra and their Application in Risk Prediction and Risk Monitoring ». Dans Basic Statistics for Risk Management in Banks and Financial Institutions, 119–40. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192849014.003.0005.
Texte intégralKumar, Rajendra, Surbhit Shukla et C. S. Raghuvanshi. « Deep Learning Models for Predicting High and Low Tides With Gravitational Analysis ». Dans Practice, Progress, and Proficiency in Sustainability, 35–46. IGI Global, 2023. http://dx.doi.org/10.4018/979-8-3693-1722-8.ch003.
Texte intégralZickler Stefan et Veloso Manuela. « Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2010. https://doi.org/10.3233/978-1-60750-606-5-189.
Texte intégralActes de conférences sur le sujet "Variable prediction horizons"
Ngo, Tri, et Cornel Sultan. « Towards Automation of Helicopter Landings on Ship Decks Using Integer Programming and Model Predictive Control ». Dans Vertical Flight Society 80th Annual Forum & Technology Display, 1–9. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12783.
Texte intégralXiong, Weiliang, Xiangjun Xia, Haiping Du et Defeng He. « A Two-Stage Variable-Horizon Economic Model Predictive Control without Terminal Constraint ». Dans 2024 IEEE 63rd Conference on Decision and Control (CDC), 4791–97. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886727.
Texte intégralKellermann, Christoph, Eric Neumann et Joern Ostermann. « Prediction of variable forecast horizons with artificial neural networks by embedding the temporal resolution warping ». Dans 2022 International Conference on Control, Automation and Diagnosis (ICCAD). IEEE, 2022. http://dx.doi.org/10.1109/iccad55197.2022.9853884.
Texte intégralDussi, Simone, Ryvo Octaviano et Pejman Shoeibi Omrani. « Bayesian Networks Applied to ESP Performance Monitoring and Forecasting ». Dans SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210495-ms.
Texte intégralAlevras, Ilias, Petros Karamanakos, Stefanos Manias et Ralph Kennel. « Variable switching point predictive torque control with extended prediction horizon ». Dans 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015. http://dx.doi.org/10.1109/icit.2015.7125445.
Texte intégralLi, Jiahui, Jian Zhang et Bo Wang. « Cooperative Control Strategy for Variable Speed Limit and Dynamic Hard Shoulder Running of Highway On-Ramp Merging Area ». Dans 2024 International Conference on Smart Transportation Interdisciplinary Studies. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2025. https://doi.org/10.4271/2025-01-7207.
Texte intégralGonzález, Cristóbal, et Alejandro Angulo. « Multistep–Finite–Control–Set Model Predictive Control with Variable–Step Prediction Horizon ». Dans 2023 IEEE 8th Southern Power Electronics Conference (SPEC). IEEE, 2023. http://dx.doi.org/10.1109/spec56436.2023.10408051.
Texte intégralAli, Ahmed M., et Dirk Söffker. « Real-Time Applicable Power Management of Multi-Source Fuel Cell Vehicles Using Situation-Based Model Predictive Control ». Dans ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22383.
Texte intégralLee, Tae-Kyung, et Zoran S. Filipi. « Control Oriented Modeling and Nonlinear Model Predictive Control of Advanced SI Engine System ». Dans ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4024.
Texte intégralFernando, Eranga, Syed Imtiaz, Salim Ahmed, Kevin Murrant, Robert Gash, Mohammed Islam et Hasanat Zaman. « Obstacle Avoidance Nonlinear Model Predictive Controller for Autonomous Surface Vessels With Variable Sampling Time Prediction ». Dans ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-126778.
Texte intégralRapports d'organisations sur le sujet "Variable prediction horizons"
Clements, Michael, Robert W. Rich et Joseph Tracy. An Investigation into the Uncertainty Revision Process of Professional Forecasters. Federal Reserve Bank of Cleveland, septembre 2024. http://dx.doi.org/10.26509/frbc-wp-202419.
Texte intégralShaver, Greg, et Miles Droege. Develop and Deploy a Safe Truck Platoon Testing Protocol for the Purdue ARPA-E Project in Indiana. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317314.
Texte intégral