Littérature scientifique sur le sujet « Vegetated channels »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Vegetated channels ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Vegetated channels"
Zhang, Ming Wu, Chun Bo Jiang et He Qing Huang. « Lateral Distributions of Depth-Averaged Velocity in Compound Channels with Submerged Vegetated Floodplains ». Applied Mechanics and Materials 641-642 (septembre 2014) : 288–99. http://dx.doi.org/10.4028/www.scientific.net/amm.641-642.288.
Texte intégralNepf, Heidi M. « Hydrodynamics of vegetated channels ». Journal of Hydraulic Research 50, no 3 (juin 2012) : 262–79. http://dx.doi.org/10.1080/00221686.2012.696559.
Texte intégralMohd Yusof, Muhammad Azizol, Suraya Sharil et Wan Hanna Melini Wan Mohtar. « THE HYDRODYNAMIC CHARACTERISTICS FOR VEGETATIVE CHANNEL WITH GRAVEL BED DUNES ». Jurnal Teknologi 84, no 2 (27 janvier 2022) : 93–102. http://dx.doi.org/10.11113/jurnalteknologi.v84.17045.
Texte intégralBorovkov, V. S., et M. Yurchuk. « Hydraulic resistance of vegetated channels ». Hydrotechnical Construction 28, no 8 (août 1994) : 432–38. http://dx.doi.org/10.1007/bf01487449.
Texte intégralNaot, Dan, Iehisa Nezu et Hiroji Nakagawa. « Unstable Patterns in Partly Vegetated Channels ». Journal of Hydraulic Engineering 122, no 11 (novembre 1996) : 671–73. http://dx.doi.org/10.1061/(asce)0733-9429(1996)122:11(671).
Texte intégralCarollo, F. G., V. Ferro et D. Termini. « Flow Velocity Measurements in Vegetated Channels ». Journal of Hydraulic Engineering 128, no 7 (juillet 2002) : 664–73. http://dx.doi.org/10.1061/(asce)0733-9429(2002)128:7(664).
Texte intégralSalama, Mohamed M., et Mohamed F. Bakry. « Design of earthen vegetated open channels ». Water Resources Management 6, no 2 (1992) : 149–59. http://dx.doi.org/10.1007/bf00872209.
Texte intégralZhang, Jiao, Zhangyi Mi, Wen Wang, Zhanbin Li, Huilin Wang, Qingjing Wang, Xunle Zhang et Xinchun Du. « An Analytical Solution to Predict the Distribution of Streamwise Flow Velocity in an Ecological River with Submerged Vegetation ». Water 14, no 21 (5 novembre 2022) : 3562. http://dx.doi.org/10.3390/w14213562.
Texte intégralCarollo, Francesco Giuseppe, Vito Ferro et Donatella Termini. « ANALYSING LONGITUDINAL TURBULENCE INTENSITY IN VEGETATED CHANNELS ». Journal of Agricultural Engineering 38, no 4 (31 décembre 2007) : 25. http://dx.doi.org/10.4081/jae.2007.4.25.
Texte intégralNaot, Dan, Iehisa Nezu et Hiroji Nakagawa. « Hydrodynamic Behavior of Partly Vegetated Open Channels ». Journal of Hydraulic Engineering 122, no 11 (novembre 1996) : 625–33. http://dx.doi.org/10.1061/(asce)0733-9429(1996)122:11(625).
Texte intégralThèses sur le sujet "Vegetated channels"
Judy, N. D. « Resistance to flow in vegetated channels ». Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376983.
Texte intégralIsmail, Zulhilmi. « A study of overbank flows in non-vegetated and vegetated floodplains in compound meandering channels ». Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/7905.
Texte intégralAbdalrazaak, Al-Asadi Khalid A. « Experimental Study and Numerical Simulation of Vegetated Alluvial Channels ». Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/596001.
Texte intégralSavio, Mario. « Turbulent structure and transport processes in open-channel flows with patchy-vegetated beds ». Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=237016.
Texte intégralNikora, Nina. « Flow structure and hydraulic resistance in channels with vegetated beds ». Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=227600.
Texte intégralYang, Qingjun (Judy Qingjun). « Estimation of the bed shear stress in vegetated and bare channels ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99580.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 69-77).
The shear stress at the bed of a channel influences important benthic processes such as sediment transport. Several methods exist to estimate the bed shear stress in bare channels without vegetation, but most of these are not appropriate for vegetated channels due to the impact of vegetation on the velocity profile and turbulence production. This study proposes a new model to estimate the bed shear stress in both vegetated and bare channels with smooth beds. The model, which is supported by measurements, indicates that for both bare and vegetated channels with smooth beds, within a viscous sub-layer at the bed, the viscous stress decreases linearly with increasing distance from the bed, resulting in a parabolic velocity profile at the bed. For bare channels, the model describes the velocity profile in the overlap region of the Law of the Wall. For emergent canopies of sufficient density (frontal area per unit canopy volume a >/= 4.3m⁻¹ ), the thickness of the linear-stress layer is set by the stem diameter, leading to a simple estimate for bed shear stress.
by Qingjun (Judy) Yang.
S.M.
Maji, S., P. R. Hanmaiahgari, R. Balachandar, Jaan H. Pu, A. M. Ricardo et R. M. L. Ferreira. « A review on hydrodynamics of free surface flows in emergent vegetated channels ». MDPI, 2020. http://hdl.handle.net/10454/17820.
Texte intégralThis review paper addresses the structure of the mean flow and key turbulence quantities in free-surface flows with emergent vegetation. Emergent vegetation in open channel flow affects turbulence, flow patterns, flow resistance, sediment transport, and morphological changes. The last 15 years have witnessed significant advances in field, laboratory, and numerical investigations of turbulent flows within reaches of different types of emergent vegetation, such as rigid stems, flexible stems, with foliage or without foliage, and combinations of these. The influence of stem diameter, volume fraction, frontal area of stems, staggered and non-staggered arrangements of stems, and arrangement of stems in patches on mean flow and turbulence has been quantified in different research contexts using different instrumentation and numerical strategies. In this paper, a summary of key findings on emergent vegetation flows is offered, with particular emphasis on: (1) vertical structure of flow field, (2) velocity distribution, 2nd order moments, and distribution of turbulent kinetic energy (TKE) in horizontal plane, (3) horizontal structures which includes wake and shear flows and, (4) drag effect of emergent vegetation on the flow. It can be concluded that the drag coefficient of an emergent vegetation patch is proportional to the solid volume fraction and average drag of an individual vegetation stem is a linear function of the stem Reynolds number. The distribution of TKE in a horizontal plane demonstrates that the production of TKE is mostly associated with vortex shedding from individual stems. Production and dissipation of TKE are not in equilibrium, resulting in strong fluxes of TKE directed outward the near wake of each stem. In addition to Kelvin–Helmholtz and von Kármán vortices, the ejections and sweeps have profound influence on sediment dynamics in the emergent vegetated flows.
Folorunso, Olatunji Peter. « Physically and numerically modelling turbulent flow in a patchy vegetated open channel ». Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5578/.
Texte intégralCarraretto, Luca. « Functional characterization of AtTPK3 potassium channel of Arabidopsis thaliana ». Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3426295.
Texte intégralIl mio progetto di dottorato si è focalizzato sulla caratterizzazione, dal punto di vista biochimico ed elettrofisiologico, di una proteina denominata TPK3 che è predetta di funzionare come canale selettiva per il potassio (K+) ed essere localizzata nei cloroplasti nelle piante superiori,. Questa proteina appartiene alla famiglia dei canali TPK (da Tandem-Pore K+ channels) e mostra omologia di sequenza a un altro canale del K+ studiato nello stesso nostro laboratorio, denominato SynK (Zanetti et al., 2010), a localizzazione tilacoidale ed appartenente al phylum dei Cianobatteri. È stato dimostrato in più esperimenti che il canale SynK è fondamentale per la regolazione della fotosintesi nei Cianobatteri, in considerazione del fenotipo fotosensibile mostrato dai mutanti per il gene synk. Visto la localizzazione predetta del TPK3, è stato ipotizzato in partenza che TPK3 potesse svolgere un ruolo simile nelle piante superiori. Finora nulla si conosceva sulle proprietà di TPK3, ne sui suoi ruoli fisiologici, ne su di un suo eventuale coinvolgimento nella fotosintesi nelle piante superiori; il lavoro contenuto nel progetto presentato ha cercato di chiarire alcuni aspetti salienti delle funzioni di TPK3. Dopo studi di localizzazione subcellulare condotti con tecniche di biochimica e microscopia confocale, il canale TPK3 è stato espresso in E. coli per la successiva caratterizzazione elettrofisiologica in bilayer lipidico planare allo scopo di determinare la sua funzione come canale di K+. L’assenza di mutanti commerciali per il gene tpk3 ha necessitato la messa a punto del suo silenziamento tramite RNA interference del messaggero per la proteina suddetta, al fine di analizzarne i possibili ruoli fisiologici. Le piante silenziate risultanti, sottoposte a differenti condizioni di crescita, sono state studiate in vari esperimenti atti a determinarne vari parametri inclusi quelli fotosintetici. Contemporaneamente allo studio del TPK3, quello di maggior rilievo nel mio dottorato, ho seguito anche altri due filoni di ricerca principali, riguardanti l’uno l’approfondimento delle funzioni di due membri dei Recettori di Glutammato vegetali (GluRs) e l’altro la caratterizzazione degli omologhi del recentemente identificato MCU (Mitochondrial Calcium Uniporter) di Mammiferi. Nella presente tesi è inoltre incluso un manoscritto (Checchetto et al., 2012) per il quale ho collaborato nell’espressione eterologa del canale di K+ calcio-dipendente (SynCaK) di Cianobatteri.
Ferrara, G. « VIRAL ION CHANNEL PRODUCTION FOR STRUCTURAL STUDIES ». Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/150558.
Texte intégralLivres sur le sujet "Vegetated channels"
New York (State). Dept. of Transportation et Geological Survey (U.S.), dir. Estimation of roughness coefficients for natural stream channels with vegetated banks. [Reston, Va.] : U.S. Geological Survey, 1998.
Trouver le texte intégralCoon, William F. Estimation of roughness coefficients for natural stream channels with vegetated banks. Denver, CO : U.S. Geological Survey, 1998.
Trouver le texte intégralCoon, William F. Estimates of roughness coefficients for selected natural stream channels with vegetated banks in New York. Ithaca, N.Y : U.S. Geological Survey, 1995.
Trouver le texte intégralCoon, William F. Estimates of roughness coefficients for selected natural stream channels with vegetated banks in New York. Ithaca, N.Y : U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Trouver le texte intégralPhillips, Jeff V., et Saeid Tadayon. Selection of Manning's Roughness Coefficient for Natural and Constructed Vegetated and Non-Vegetated Channels, and Vegetation Maintenance Plan ... Arizona : USGS Scientific Report 2006-5108. ProQuest, UMI Dissertation Publishing, 2011.
Trouver le texte intégralCoon, William F. 'Estimation of Roughness Coefficients for Natural Stream Channels With Vegetated Banks (U.S. Geological Survey Water Supply Paper ; 2441)'. For sale by the U.S. Geological Survey, Information Services, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Vegetated channels"
Aberle, Jochen, et Juha Järvelä. « Hydrodynamics of Vegetated Channels ». Dans Rivers – Physical, Fluvial and Environmental Processes, 519–41. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17719-9_21.
Texte intégralNepf, Heidi, Jeffrey Rominger et Lijun Zong. « Coherent Flow Structures in Vegetated Channels ». Dans Coherent Flow Structures at Earth's Surface, 135–47. Chichester, UK : John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118527221.ch9.
Texte intégralTae Beom kim et Sung-Uk choi. « Depth-Avegraged Modeling of Vegetated Open-Channel Flows Using Finite Element Method ». Dans Advances in Water Resources and Hydraulic Engineering, 411–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89465-0_72.
Texte intégralTruong, S. H., K. L. Phan, Marcel J. F. Stive et W. S. J. Uijttewaal. « A Laboratory Study of the Shallow Flow Field in a Vegetated Compound Channel ». Dans Springer Water, 665–75. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2081-5_38.
Texte intégralSalleh, M. Z. M., Z. Ibrahim, R. Saari, M. E. Mohd Shariff et M. Jumain. « The Influence of Vegetated Alternate Bar on Flow Resistance in an Alluvial Straight Channel ». Dans Lecture Notes in Civil Engineering, 167–76. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5947-9_14.
Texte intégralBoraah, Nekita, et Bimlesh Kumar. « Prediction of Submerged Vegetated Flow in a Channel Using GMDH-Type Neural Network Approach ». Dans River Hydraulics, 191–205. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81768-8_16.
Texte intégralMaji, Soumen, Susovan Pal, Prashanth Reddy Hanmaiahgari et Vikas Garg. « Turbulent Hydrodynamics Along Lateral Direction in and Around Emergent and Sparse Vegetated Open-Channel Flow ». Dans Water Science and Technology Library, 455–67. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_39.
Texte intégralGuan, Yutong, et Xiaonan Tang. « Influence of Partially-Covered Riparian Vegetation on Flow in a Compound Channel ». Dans Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220956.
Texte intégralGhisalberti, M., H. Nepf et E. Murphy. « Longitudinal dispersion in vegetated channels ». Dans River Flow 2006. Taylor & ; Francis, 2006. http://dx.doi.org/10.1201/9781439833865.ch63.
Texte intégralJärvelä, Juha. « Flow resistance in vegetated channels ». Dans Environmental Hydraulics and Sustainable Water Management, Two Volume Set, 1667–72. CRC Press, 2004. http://dx.doi.org/10.1201/b16814-272.
Texte intégralActes de conférences sur le sujet "Vegetated channels"
« Flow in vegetated channels ». Dans The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-343.
Texte intégralLima, A., et N. Izumi. « Viscous shear layers in partially vegetated channels ». Dans The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-353.
Texte intégralPALERMO, MICHELE, STEFANO PAGLIARA et DEEP ROY. « EROSIVE PROCESSES DOWNSTREAM OF ARCH SHAPED SILLS IN VEGETATED CHANNELS ». Dans 38th IAHR World Congress. The International Association for Hydro-Environment Engineering and Research (IAHR), 2019. http://dx.doi.org/10.3850/38wc092019-0348.
Texte intégralKilgore, Roger T., et George K. Cotton. « Incorporating Site-Specific Variables in the Design of Vegetated Channels ». Dans World Environmental and Water Resources Congress 2007. Reston, VA : American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)42.
Texte intégralLiu, Chao, Yuqi Shan, Kejun Yang et Xingnian Liu. « Calculation of cross-section average flow velocity in vegetated compound channels ». Dans 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987613.
Texte intégralG. J. Hanson et D. M. Temple. « PERFORMANCE OF BARE EARTH AND VEGETATED STEEP CHANNELS UNDER LONG DURATION FLOWS ». Dans 2001 Sacramento, CA July 29-August 1,2001. St. Joseph, MI : American Society of Agricultural and Biological Engineers, 2001. http://dx.doi.org/10.13031/2013.7395.
Texte intégralCesare Lama, Giuseppe Francesco, et Giovanni Battista Chirico. « Effects of reed beds management on the hydrodynamic behaviour of vegetated open channels ». Dans 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE, 2020. http://dx.doi.org/10.1109/metroagrifor50201.2020.9277622.
Texte intégralOzan, A. Yuksel, et G. Constantinescu. « On the similarities and differences between thermally-driven lockexchange flows in fully and partially-vegetated channels ». Dans The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-132.
Texte intégralHan, Xiao, et Ning Zhang. « Coastal Hydrodynamic and Sediment-Salinity Transport Simulations for Southwest Louisiana Using Measured Vegetation Data ». Dans ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51571.
Texte intégralJANG, EUNKYUNG, UN JI et MYEONGHUI AHN. « Numerical Calibration of Flow Roughness for Vegetated Channel ». Dans 38th IAHR World Congress. The International Association for Hydro-Environment Engineering and Research (IAHR), 2019. http://dx.doi.org/10.3850/38wc092019-0402.
Texte intégralRapports d'organisations sur le sujet "Vegetated channels"
Estimation of roughness coefficients for natural stream channels with vegetated banks. US Geological Survey, 1998. http://dx.doi.org/10.3133/wsp2441.
Texte intégral