Littérature scientifique sur le sujet « Virtual acoustics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Virtual acoustics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Virtual acoustics"

1

Vorländer, Michael. « Virtual Acoustics ». Archives of Acoustics 39, no 3 (1 mars 2015) : 307–18. http://dx.doi.org/10.2478/aoa-2014-0036.

Texte intégral
Résumé :
Abstract Virtual Reality (VR) systems are used in engineering, architecture, design and in applications of biomedical research. The component of acoustics in such VR systems enables the creation of audio-visual stimuli for applications in room acoustics, building acoustics, automotive acoustics, environmental noise control, machinery noise control, and hearing research. The basis is an appropriate acoustic simulation and auralization technique together with signal processing tools. Auralization is based on time-domain modelling of the components of sound source characterization, sound propagation, and on spatial audio technology. Whether the virtual environment is considered sufficiently accurate or not, depends on many perceptual factors, and on the pre-conditioning and immersion of the user in the virtual environment. In this paper the processing steps for creation of Virtual Acoustic Environments and the achievable degree of realism are briefly reviewed. Applications are discussed in examples of room acoustics, archeological acoustics, aircraft noise, and audiology.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Woszczyk, Wieslaw. « Active Acoustics in Concert Halls - A New Approach ». Archives of Acoustics 36, no 2 (1 mai 2011) : 379–93. http://dx.doi.org/10.2478/v10168-011-0028-6.

Texte intégral
Résumé :
Abstract Active acoustics offers potential benefits in music halls having acoustical short-comings and is a relatively inexpensive alternative to physical modifications of the enclosures. One critical benefit of active architecture is the controlled variability of acoustics. Although many improvements have been made over the last 60 years in the quality and usability of active acoustics, some problems still persist and the acceptance of this technology is advancing cautiously. McGill's Virtual Acoustic Technology (VAT) offers new solutions in the key areas of performance by focusing on the electroacoustic coupling between the existing room acoustics and the simulation acoustics. All control parameters of the active acoustics are implemented in the Space Builder engine by employing multichannel parallel mixing, routing, and processing. The virtual acoustic response is created using low-latency convolution and a three-way temporal segmentation of the measured impulse responses. This method facilitates a sooner release of the virtual room response and its radiation into the surrounding space. Field tests are currently underway at McGill University involving performing musicians and the audience in order to fully assess and quantify the benefits of this new approach in active acoustics.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pätynen, Jukka, et Tapio Lokki. « Evaluation of Concert Hall Auralization with Virtual Symphony Orchestra ». Building Acoustics 18, no 3-4 (décembre 2011) : 349–66. http://dx.doi.org/10.1260/1351-010x.18.3-4.349.

Texte intégral
Résumé :
Authenticity of the simulation of room acoustics is evaluated by comparing auralizations with real recordings. Impulse responses are recorded in two concert halls with 34 loudspeakers positioned on the stage in the shape of an orchestra and a 3D microphone probe for spatial reproduction. The acoustics of the same concert halls are simulated with acoustics modeling software. B-format impulse responses are calculated by using the identical source and receiver positions as in the real halls. Additionally, two processing methods are applied to the simulated responses in order to decrease the difference in acoustical impression. Objective room acoustic parameters between the real and simulated halls are compared, and a listening test utilizing convolutions with anechoic orchestral music is organized. The results suggest that the subjects can be categorized in two groups having preference of brightness or naturalness. Depending on the music style, auralizations with processed responses are assessed equal or better than the real hall in terms of instrument balance and brightness.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Persterer, A., M. Opitz, Ch Müller et M. Nefjodova. « Virtual acoustics at microgravity ». Journal of the Acoustical Society of America 92, no 4 (octobre 1992) : 2397. http://dx.doi.org/10.1121/1.404758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Woszczyk, Wieslaw, Doyuen Ko et Brett Leonard. « Virtual Acoustics at the Service of Music Performance and Recording ». Archives of Acoustics 37, no 1 (1 mars 2012) : 109–13. http://dx.doi.org/10.2478/v10168-012-0015-6.

Texte intégral
Résumé :
Abstract Virtual or active acoustics refers to the generation of a simulated room response by means of electroacoustics and digital signal processing. An artificial room response may include sound reflections and reverberation as well as other acoustic features mimicking the actual room. They will cause the listener to have an impression of being immersed in virtual acoustics of another simulated room that coexists with the actual physical room. Using low-latency broadband multi-channel convolution and carefully measured room data, optimized transducers for rendering of sound fields, and an intuitive touch control user interface, it is possible to achieve a very high perceived quality of active acoustics, with a straightforward adjustability. The electroacoustically coupled room resulting from such optimization does not merely produce an equivalent of a back-door reverberation chamber, but rather a fully functional complete room superimposed on the physical room, yet with highly selectable and adjustable acoustic response. The utility of such active system for music recording and performance is discussed and supported with examples.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Thompson, Charles, Max Dennis, Jing Tsui et Miroslava Raspopvic. « Model‐based virtual room acoustics ». Journal of the Acoustical Society of America 109, no 5 (mai 2001) : 2460. http://dx.doi.org/10.1121/1.4744729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vorlaender, Michael. « Virtual reality meets architectural acoustics ». Journal of the Acoustical Society of America 142, no 4 (octobre 2017) : 2629. http://dx.doi.org/10.1121/1.5014629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vorländer, Michael, Dirk Schröder, Sönke Pelzer et Frank Wefers. « Virtual reality for architectural acoustics ». Journal of Building Performance Simulation 8, no 1 (19 mai 2014) : 15–25. http://dx.doi.org/10.1080/19401493.2014.888594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ko, Doyuen, et Wieslaw Woszczyk. « Virtual Acoustics for Musicians : Subjective Evaluation of a Virtual Acoustic System in Performance of String Quartets ». Journal of the Audio Engineering Society 66, no 9 (16 septembre 2018) : 712–23. http://dx.doi.org/10.17743/jaes.2018.0038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Freiheit, Ron. « Virtual acoustics for music practice rooms ». Journal of the Acoustical Society of America 113, no 4 (avril 2003) : 2214. http://dx.doi.org/10.1121/1.4780248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Virtual acoustics"

1

Kuster, Martin. « Inverse methods in room acoustics with under-determined data and applications to virtual acoustics ». Thesis, Queen's University Belfast, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486233.

Texte intégral
Résumé :
With the advent of commercial surround sound systems there is a growing demand for 11 system that can convert existing mono and stereo recor~ings into a surround sound recording. A part of this problem is to generate the reverberation for the additional audio channels from the reverberation in the mono or stereo recording. . , In thi~ thesis, it is investigated whether a room model can be constructed from one or two room impulse responses and in which a virtual surround sound recording can then be perfonned. The estimation of the room model parameters is based on the three well-mown room acoustic models; the geometrical acoustic model with specular reflections, the eigenmode model and the diffuse field model. It is shown that the scope with the geometrical acoustic and the eigenmode model is limited but it is possible to obtain useful and consistent results for the room volume and the source-to-receiver distance from the diffuse field model. Based on these findings, the problem of generating multiple room impulse responses from one or two input room impulse response(s) is approached slightly differently. The very early part of the room impulse responses (the early reflections) is generated by a geometrical model with specular and diffuse reflections. The remainder of the room impulse responses are copies of the input room impulses obtained by convolution with a set of filters that control the coherence between them. The values for the coherence are given by expressions for the coherence between microphones with first-order directivity in a diffuse field and these expressions are derived in the thesis. The results from objective and subjective tests indicate that this method works successfully.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Carwile, Zachary Thomas. « Validation of a 3-D Virtual Acoustic Prototyping Method For Use In Structural Design ». Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/30988.

Texte intégral
Résumé :
Virtual acoustic prototyping (auralization) is the rendering of a virtual sound field that is created from the calculated acoustic response of a modeled structure. Auralization is useful in the design and subjective evaluation of buildings, automobiles, and aircraft. The virtual acoustic prototyping method in this thesis uses finite element modeling (FEM), the equivalent source method (ESM), and head-related transfer functions (HRTFs). A tradeoff exists between the accuracy of the auralization process and the number of equivalent sources (and thus computational power) that are required. The goal of this research is to validate (numerically and subjectively) a virtual acoustic prototyping method for use in structural design; this thesis illustrates the first attempt to apply the aforementioned methods to a structure that represents a typical building or automobile. The structureâ s acoustics were modeled using FEM, ESM, and HRTFs. A prototype of the modeled structure was built. A 36% correlation was achieved between the model and prototype. Slight variations in boundary conditions caused significant FEM error, but the data represented a typical structure. Psychoacoustic comparison testing was performed to determine the number of equivalent sources that must be used in an auralization to accurately recreate the sound field. The number was found to be dependent on the type of noise that is played to the test subject. A clear relationship between the numerical correlation of two sounds and the percentage of subjects who could hear a difference between those two sounds was established for impulsive, broadband, and engine noises.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
3

Webb, Craig Jonathan. « Parallel computation techniques for virtual acoustics and physical modelling synthesis ». Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/15779.

Texte intégral
Résumé :
The numerical simulation of large-scale virtual acoustics and physical modelling synthesis is a computationally expensive process. Time stepping methods, such as finite difference time domain, can be used to simulate wave behaviour in models of three-dimensional room acoustics and virtual instruments. In the absence of any form of simplifying assumptions, and at high audio sample rates, this can lead to simulations that require many hours of computation on a standard Central Processing Unit (CPU). In recent years the video game industry has driven the development of Graphics Processing Units (GPUs) that are now capable of multi-teraflop performance using highly parallel architectures. Whilst these devices are primarily designed for graphics calculations, they can also be used for general purpose computing. This thesis explores the use of such hardware to accelerate simulations of three-dimensional acoustic wave propagation, and embedded systems that create physical models for the synthesis of sound. Test case simulations of virtual acoustics are used to compare the performance of workstation CPUs to that of Nvidia’s Tesla GPU hardware. Using representative multicore CPU benchmarks, such simulations can be accelerated in the order of 5X for single precision and 3X for double precision floating-point arithmetic. Optimisation strategies are examined for maximising GPU performance when using single devices, as well as for multiple device codes that can compute simulations using billions of grid points. This allows the simulation of room models of several thousand cubic metres at audio rates such as 44.1kHz, all within a useable time scale. The performance of alternative finite difference schemes is explored, as well as strategies for the efficient implementation of boundary conditions. Creating physical models of acoustic instruments requires embedded systems that often rely on sparse linear algebra operations. The performance efficiency of various sparse matrix storage formats is detailed in terms of the fundamental operations that are required to compute complex models, with an optimised storage system achieving substantial performance gains over more generalised formats. An integrated instrument model of the timpani drum is used to demonstrate the performance gains that are possible using the optimisation strategies developed through this thesis.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Takeuchi, Takashi. « Systems for virtual acoustic imaging using the binaural principle ». Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Amengual, Garí Sebastià Vicenç [Verfasser]. « Investigations on the Influence of Acoustics on Live Music Performance using Virtual Acoustic Methods / Sebastià Vicenç Amengual Garí ». Detmold : Hochschule für Musik Detmold, Musikbibliothek, 2018. http://d-nb.info/1173637931/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hill, Peter A. « Front back confusion in systems for the production of virtual acoustic images ». Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

McDermott, Scott. « An Analysis of Accurate, Real-Time Reproduction of 3D Acoustics in Virtual Environments ». Thesis, University of Louisiana at Lafayette, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3687696.

Texte intégral
Résumé :

Many of the applications, virtual environments, and video games available to average computer users integrate stunning three-dimensional (3D) graphics and real-world visualizations. Developers spend an extraordinary amount of time and effort creating these immersive, realistic virtual environments, primarily focusing on the graphics components. Within these virtual realities, the user should easily perceive the locations of sound sources accurately, as well as the acoustic nature of the environment. However, for reasons of economy and simplicity, most developers apply readily available industry standards for generating pseudo-3D sounds in their applications. This research explores the shortcomings of these standards, proposes an effective alternative, and provides a detailed analysis of the various possible approaches.

This project includes a number of computationally efficient, physics-based 3D acoustics simulations, each of which will produce realistic aural reproductions. The primary goal is to evaluate and compare these algorithms against each other, non-3D sound reproduction, and the current industry standards (e.g. Microsoft's DirectX® pseudo-3D algorithm). We will test three hypotheses. First, users will find that physics-based 3D algorithms will render improved auralization reproductions compared against industry standards like DirectX® and/or OpenAL. Second, localization and spatialization will improve with user training when using these algorithms. Finally, we should discover an unambiguous ranking system for the quality of each tested algorithm.

Styles APA, Harvard, Vancouver, ISO, etc.
8

Collins, Christopher Michael. « Development of a Virtual Acoustic Showroom for Simulating Listening Environments and Audio Speakers ». Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/9965.

Texte intégral
Résumé :
Virtual acoustic techniques can be used to create virtual listening environments for multiple purposes. Using multi-speaker reproduction, a physical environment can take on the acoustical appearance of another environment. Implementation of this environment auralization could change the way customers evaluate speakers in a retail store. The objective of this research is to develop a virtual acoustic showroom using a multi- speaker system. The two main components to the virtual acoustic showroom are simulating living environments using the image source method, and simulating speaker responses using inverse filtering. The image source method is used to simulate realistic living environments by filtering the environment impulse response by frequency-dependant absorption coefficients of typical building materials. Psychoacoustic tests show that listeners can match virtual acoustic cues with appropriate virtual visual cues. Inverse filtering is used to "replace" the frequency response function of one speaker with another, allowing a single set of speakers to represent any number of other speakers. Psychoacoustic tests show that listeners could not distinguish the difference between the original speaker and the reference speaker that was mimicking the original. The two components of this system are shown to be accurate both empirically and psychologically.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kahana, Yuvi. « Numerical modelling of the head-related transfer function ». Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326799.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lalime, Aimee L. « Development of a Computationally Efficient Binaural Simulation for the Analysis of Structural Acoustic Data ». Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34524.

Texte intégral
Résumé :
Binaural simulation is the recreation of a three-dimensional audio environment around a listener's head. The binaural simulation of structural acoustic data would open new opportunities in virtual prototyping and simulation. By modeling the structure as an array of vibrating monopoles and applying Head Related Transfer Functions (HRTFs) to each of the sources, a binaural simulation of this type can be created. Unfortunately, this simulation method requires an extensive amount of computer power and speed for real-time simulation, more so than is available with current technology. The objective of this research is to reduce the number of computations required in the binaural simulation of structural acoustic data. This thesis details two methods of reducing the number of real-time calculations required in this binaural analysis: singular value decomposition (SVD), and equivalent source reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values and vectors. The ESR method reduces the number of sources to be analyzed in real-time by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. The ESR and SVD reduction methods can be combined to provide an estimated computation time reduction of 99.4%. In addition, preliminary tests show that there is a 97% correlation between the results of the combined reduction methods and the results found with current binaural simulation techniques.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Virtual acoustics"

1

Thompson, Sean. Interactive image-source techniques for virtual acoustics. Ottawa : National Library of Canada, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

3-D sound for virtual reality and multimedia. Boston : AP Professional, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Begault, Durand R. 3-D sound for virtual reality and multimedia. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Begault, Durand R. 3-D sound for virtual reality and multimedia. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Begault, Durand R. 3-D sound for virtual reality and multimedia. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Iida, Kazuhiro. Head-Related Transfer Function and Acoustic Virtual Reality. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9745-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hoag, Kenneth J. Facilitating rich acoustical environments in virtual worlds. Monterey, Calif : Naval Postgraduate School, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Auralization Fundamentals Of Acoustics Modelling Simulation Algorithms And Acoustic Virtual Reality. Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vorländer, Michael. Auralization : Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Auralization : Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality (RWTHedition). Springer, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Virtual acoustics"

1

Lokki, Tapio, et Lauri Savioja. « Virtual Acoustics ». Dans Handbook of Signal Processing in Acoustics, 761–71. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-30441-0_39.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vorländer, Michael, Sönke Pelzer et Frank Wefers. « Virtual Room Acoustics ». Dans Current Research in Systematic Musicology, 219–42. Heidelberg : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00107-4_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Blauert, Jens. « A Virtual Testbed for Binaural Agents ». Dans Modern Acoustics and Signal Processing, 491–510. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-00386-9_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Brooke, G. H., D. J. Thomson et R. F. MacKinnon. « Some Characteristics of Virtual Modes in Shallow Water with High Speed Bottom ». Dans Ocean Seismo-Acoustics, 233–42. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2201-6_24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Smith, Julius O. « Digital Waveguide Architectures for Virtual Musical Instruments ». Dans Handbook of Signal Processing in Acoustics, 399–417. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-30441-0_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chemnitz, Alexander, et Thomas Sattelmayer. « Calculation of the Thermoacoustic Stability of a Main Stage Thrust Chamber Demonstrator ». Dans Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 235–47. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_15.

Texte intégral
Résumé :
Abstract The stability behavior of a virtual thrust chamber demonstrator with low injection pressure loss is studied numerically. The approach relies on an eigenvalue analysis of the Linearized Euler Equations. An updated form of the stability prediction procedure is outlined, addressing mean flow and flame response calculations. The acoustics of the isolated oxidizer dome are discussed as well as the complete system incorporating dome and combustion chamber. The coupling between both components is realized via a scattering matrix representing the injectors. A flame transfer function is applied to determine the damping rates. Thereby it is found that the procedure for the extraction of the flame transfer function from the CFD solution has a significant impact on the stability predictions.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mirasol-Menacho, Sebastián, Ana Planells-Pérez, Arturo Barba-Sevillano, Jaume Segura-Garcia, Máximo Cobos-Serrano et Alicia Giménez-Pérez. « Development of a HMD for Virtual Acoustics. Application in a World Heritage (UNESCO) Building from the Valencian Civil Gothic ». Dans Lecture Notes in Computer Science, 241–50. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40651-0_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vorländer, Michael. « Acoustic Virtual Reality Systems ». Dans Auralization, 323–31. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51202-6_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mihelj, Matjaž, Domen Novak et Samo Begus. « Acoustic Modality in Virtual Reality ». Dans Virtual Reality Technology and Applications, 131–59. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6910-6_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Biagi, E., S. Cerbai, P. Gambacciani et L. Masotti. « Fully Fiber Optic Ultrasonic Probes for Virtual Biopsy ». Dans Acoustical Imaging, 273–78. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8823-0_38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Virtual acoustics"

1

To, Wai Ming, Andy Chung et Brigitte Schulte-Fortkamp. « Next generation soundscape design using virtual reality technologies ». Dans 22nd International Congress on Acoustics : Acoustics for the 21st Century. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schmidt, Henrik. « Virtual Source Approach to Scattering from Partially Buried Elastic Targets ». Dans HIGH FREQUENCY OCEAN ACOUSTICS : High Frequency Ocean Acoustics Conference. AIP, 2004. http://dx.doi.org/10.1063/1.1843040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zotkin, Duraiswami et Davis. « Creation of virtual auditory spaces ». Dans IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1006193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yao, Yongchao, Xiaodong Ju, Wenxiao Qiao, Junqiang Lu, Baiyong Men et Haimin Wei. « Study of virtual instrument technology applied in sound field test ». Dans 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Woszczyk, Wieslaw, Doyuen Ko et Jonathan Hong. « Towards the state of the art in virtual acoustics technology ». Dans ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ko, Doyuen, Wieslaw Woszczyk, Jonathan Hong et Scott Levine. « Augmented stage support in ensemble performance using virtual acoustics technology ». Dans ICA 2013 Montreal. ASA, 2013. http://dx.doi.org/10.1121/1.4800322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Astheimer, P. « What you see is what you hear-Acoustics applied in virtual worlds ». Dans 1993 IEEE Research Properties in Virtual Reality Symposium. IEEE Comput. Soc. Press, 1993. http://dx.doi.org/10.1109/vrais.1993.378256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Essid, Slim, Dimitrios Alexiadis, Robin Tournemenne, Marc Gowing, Philip Kelly, David Monaghan, Petros Daras, Angelique Dremeau et Noel E. O'Connor. « An advanced virtual dance performance evaluator ». Dans ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Khan et Ghanbari. « Embedded color image coding with virtual SPIHT ». Dans IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1004674.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, P. Y., et S. F. Hsieh. « Virtual-loudspeakers-based multichannel sound system ». Dans Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics. IEEE, 1997. http://dx.doi.org/10.1109/aspaa.1997.625595.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Virtual acoustics"

1

Baz, Amr R. Virtual Structural Dynamics, Acoustics and Control. Fort Belvoir, VA : Defense Technical Information Center, juin 2001. http://dx.doi.org/10.21236/ada395200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nelson, W. T., Robert S. Bolia, Mark A. Ericson et Richard L. McKinley. Monitoring the Simultaneous Presentation of Spatialized Speech Signals in a Virtual Acoustic Environment. Fort Belvoir, VA : Defense Technical Information Center, janvier 1998. http://dx.doi.org/10.21236/ada430284.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nelson, W. T., Robert S. Bolia, Mark A. Ericson et Richard L. McKinley. Spatial Audio Displays for Speech Communications : A Comparison of Free Field and Virtual Acoustic Environments. Fort Belvoir, VA : Defense Technical Information Center, janvier 1999. http://dx.doi.org/10.21236/ada430289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

McInerney, Michael K., et John M. Carlyle.  : Demonstration of Acoustic Sensing Techniques for Fuel-Distribution System Condition Monitoring : Final Report on Project F07-AR07. Engineer Research and Developmenter Center (U.S.), janvier 2021. http://dx.doi.org/10.21079/11681/39560.

Texte intégral
Résumé :
Leaks in fuel storage tanks and distribution piping systems have been identified as a mission-critical problem by the Department of Defense and the U.S. Army. Fuel system leaks are often hard to locate and virtually inaccessible for efficient repair because the piping is often installed under a concrete pad or tarmac. Leak repair could cost up to $2,000, and the cost of cleanup and re-mediation for fuel spills can exceed $50,000. In this project an acoustic remote sensing system was installed to monitor an Army heliport refueling system to determine whether it could detect and accurately locate fuel leaks using computer software technolo-gies to distinguish acoustic leakage signatures from normal fuel system operational noise. Demonstration and validation efforts were disadvantaged by the fact that no fuel leaks occurred in the monitored system for the duration of the project. However, the monitoring system did identify several unusual acoustic events within the fueling system and interpret them as indications of intermittent malfunctions of a check valve and a fuel pump. The 30-year ROI is about 6.42. Further work is required before the technology can be fully implemented: its ability to detect fluid leaks must be proven, and the system specifications must be certified through an EPA third party.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie