Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Virtual acoustics.

Articles de revues sur le sujet « Virtual acoustics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Virtual acoustics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Vorländer, Michael. « Virtual Acoustics ». Archives of Acoustics 39, no 3 (1 mars 2015) : 307–18. http://dx.doi.org/10.2478/aoa-2014-0036.

Texte intégral
Résumé :
Abstract Virtual Reality (VR) systems are used in engineering, architecture, design and in applications of biomedical research. The component of acoustics in such VR systems enables the creation of audio-visual stimuli for applications in room acoustics, building acoustics, automotive acoustics, environmental noise control, machinery noise control, and hearing research. The basis is an appropriate acoustic simulation and auralization technique together with signal processing tools. Auralization is based on time-domain modelling of the components of sound source characterization, sound propagation, and on spatial audio technology. Whether the virtual environment is considered sufficiently accurate or not, depends on many perceptual factors, and on the pre-conditioning and immersion of the user in the virtual environment. In this paper the processing steps for creation of Virtual Acoustic Environments and the achievable degree of realism are briefly reviewed. Applications are discussed in examples of room acoustics, archeological acoustics, aircraft noise, and audiology.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Woszczyk, Wieslaw. « Active Acoustics in Concert Halls - A New Approach ». Archives of Acoustics 36, no 2 (1 mai 2011) : 379–93. http://dx.doi.org/10.2478/v10168-011-0028-6.

Texte intégral
Résumé :
Abstract Active acoustics offers potential benefits in music halls having acoustical short-comings and is a relatively inexpensive alternative to physical modifications of the enclosures. One critical benefit of active architecture is the controlled variability of acoustics. Although many improvements have been made over the last 60 years in the quality and usability of active acoustics, some problems still persist and the acceptance of this technology is advancing cautiously. McGill's Virtual Acoustic Technology (VAT) offers new solutions in the key areas of performance by focusing on the electroacoustic coupling between the existing room acoustics and the simulation acoustics. All control parameters of the active acoustics are implemented in the Space Builder engine by employing multichannel parallel mixing, routing, and processing. The virtual acoustic response is created using low-latency convolution and a three-way temporal segmentation of the measured impulse responses. This method facilitates a sooner release of the virtual room response and its radiation into the surrounding space. Field tests are currently underway at McGill University involving performing musicians and the audience in order to fully assess and quantify the benefits of this new approach in active acoustics.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pätynen, Jukka, et Tapio Lokki. « Evaluation of Concert Hall Auralization with Virtual Symphony Orchestra ». Building Acoustics 18, no 3-4 (décembre 2011) : 349–66. http://dx.doi.org/10.1260/1351-010x.18.3-4.349.

Texte intégral
Résumé :
Authenticity of the simulation of room acoustics is evaluated by comparing auralizations with real recordings. Impulse responses are recorded in two concert halls with 34 loudspeakers positioned on the stage in the shape of an orchestra and a 3D microphone probe for spatial reproduction. The acoustics of the same concert halls are simulated with acoustics modeling software. B-format impulse responses are calculated by using the identical source and receiver positions as in the real halls. Additionally, two processing methods are applied to the simulated responses in order to decrease the difference in acoustical impression. Objective room acoustic parameters between the real and simulated halls are compared, and a listening test utilizing convolutions with anechoic orchestral music is organized. The results suggest that the subjects can be categorized in two groups having preference of brightness or naturalness. Depending on the music style, auralizations with processed responses are assessed equal or better than the real hall in terms of instrument balance and brightness.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Persterer, A., M. Opitz, Ch Müller et M. Nefjodova. « Virtual acoustics at microgravity ». Journal of the Acoustical Society of America 92, no 4 (octobre 1992) : 2397. http://dx.doi.org/10.1121/1.404758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Woszczyk, Wieslaw, Doyuen Ko et Brett Leonard. « Virtual Acoustics at the Service of Music Performance and Recording ». Archives of Acoustics 37, no 1 (1 mars 2012) : 109–13. http://dx.doi.org/10.2478/v10168-012-0015-6.

Texte intégral
Résumé :
Abstract Virtual or active acoustics refers to the generation of a simulated room response by means of electroacoustics and digital signal processing. An artificial room response may include sound reflections and reverberation as well as other acoustic features mimicking the actual room. They will cause the listener to have an impression of being immersed in virtual acoustics of another simulated room that coexists with the actual physical room. Using low-latency broadband multi-channel convolution and carefully measured room data, optimized transducers for rendering of sound fields, and an intuitive touch control user interface, it is possible to achieve a very high perceived quality of active acoustics, with a straightforward adjustability. The electroacoustically coupled room resulting from such optimization does not merely produce an equivalent of a back-door reverberation chamber, but rather a fully functional complete room superimposed on the physical room, yet with highly selectable and adjustable acoustic response. The utility of such active system for music recording and performance is discussed and supported with examples.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Thompson, Charles, Max Dennis, Jing Tsui et Miroslava Raspopvic. « Model‐based virtual room acoustics ». Journal of the Acoustical Society of America 109, no 5 (mai 2001) : 2460. http://dx.doi.org/10.1121/1.4744729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vorlaender, Michael. « Virtual reality meets architectural acoustics ». Journal of the Acoustical Society of America 142, no 4 (octobre 2017) : 2629. http://dx.doi.org/10.1121/1.5014629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vorländer, Michael, Dirk Schröder, Sönke Pelzer et Frank Wefers. « Virtual reality for architectural acoustics ». Journal of Building Performance Simulation 8, no 1 (19 mai 2014) : 15–25. http://dx.doi.org/10.1080/19401493.2014.888594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ko, Doyuen, et Wieslaw Woszczyk. « Virtual Acoustics for Musicians : Subjective Evaluation of a Virtual Acoustic System in Performance of String Quartets ». Journal of the Audio Engineering Society 66, no 9 (16 septembre 2018) : 712–23. http://dx.doi.org/10.17743/jaes.2018.0038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Freiheit, Ron. « Virtual acoustics for music practice rooms ». Journal of the Acoustical Society of America 113, no 4 (avril 2003) : 2214. http://dx.doi.org/10.1121/1.4780248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Xu, Jun, Yun Jing et Nicholas X. Fang. « Transformation acoustics : virtual pinholes and collimators ». Journal of the Acoustical Society of America 131, no 4 (avril 2012) : 3325. http://dx.doi.org/10.1121/1.4708441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bottalico, Pasquale, Lady Catherine Cantor Cutiva et Eric J. Hunter. « Vocal fatigue in virtual acoustics scenarios ». Journal of the Acoustical Society of America 141, no 5 (mai 2017) : 3541. http://dx.doi.org/10.1121/1.4987484.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Piscoya, Rafael, et Martin Ochmann. « Acoustical Boundary Elements : Theory and Virtual Experiments ». Archives of Acoustics 39, no 4 (1 mars 2015) : 453–65. http://dx.doi.org/10.2478/aoa-2014-0049.

Texte intégral
Résumé :
Abstract This paper presents an overview of basic concepts, features and difficulties of the boundary element method (BEM) and examples of its application to exterior and interior problems. The basic concepts of the BEM are explained firstly, and different methods for treating the non-uniqueness problem are described. The application of the BEM to half-space problems is feasible by considering a Green's Function that satisfies the boundary condition on the infinite plane. As a special interior problem, the sound field in an ultrasonic homogenizer is computed. A combination of the BEM and the finite element method (FEM) for treating the problem of acoustic-structure interaction is also described. Finally, variants of the BEM are presented, which can be applied to problems arising in flow acoustics.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Graff, G. « Virtual Acoustics Puts Sound in its Place ». Science 256, no 5057 (1 mai 1992) : 616–17. http://dx.doi.org/10.1126/science.256.5057.616.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Zahorik, Pavel. « Assessing auditory distance perception using virtual acoustics ». Journal of the Acoustical Society of America 111, no 4 (avril 2002) : 1832–46. http://dx.doi.org/10.1121/1.1458027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Chen, Hai Jian, et Guang Yu Zhu. « Noise Reduction of Single Cylinder Diesel Engine Based on Virtual Prototype ». Advanced Materials Research 718-720 (juillet 2013) : 1499–503. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1499.

Texte intégral
Résumé :
Based on the one-dimensional and unsteady flow theory of gas dynamics and acoustic analysis method, a thermodynamics and acoustics model of single cylinder diesel engine was established, then the model was realized using GT-Power. A method combined with mechanic analysis and acoustic prediction was presented. With this method, the influence of compression ratio, inlet and outlet channels, intake valve and exhaust valve timing on engine exciting force and noise is analyzed. Then the optimization value of each factor is determined to improve the muffler. The intake and exhaust noise of the optimized engine is simulated with this model, the simulating results indicated that the exhaust noise reduces 2.6~3dB, and the intake noise reduces 1.1~1.4dB.
Styles APA, Harvard, Vancouver, ISO, etc.
17

ESCOLANO, JOSÉ, et BASILIO PUEO. « ACOUSTIC EQUATIONS IN THE PRESENCE OF RIGID POROUS MATERIALS ADAPTED TO THE FINITE-DIFFERENCE TIME-DOMAIN METHOD ». Journal of Computational Acoustics 15, no 02 (juin 2007) : 255–69. http://dx.doi.org/10.1142/s0218396x07003287.

Texte intégral
Résumé :
Finite-difference time-domain (FDTD) method has been successfully developed to model electromagnetic systems in recent years. Since acoustics and electromagnetism share certain undulatory properties, a natural adaptation of this technique has been developed too. Several acoustics problems, such as room acoustics, require the use of fibrous tangles to attenuate the propagation speed of sound waves. Notwithstanding, although free air acoustic propagation is known, FDTD technique is not developed yet to model fibrous materials. To characterize this behavior, only a few and measurable set of parameters must be considered. In this paper, a new approach for modeling fibrous materials analysis using FDTD is presented and validated. A set of simulations covering various packing densities of a real fibrous material is performed. Loudspeaker cabinets, virtual acoustics and room acoustics are situations in which this method can be applied.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Woszczyk, Wieslaw. « Virtual acoustics in multimedia production—Beyond enhancing the acoustics of concert halls ». Journal of the Acoustical Society of America 140, no 4 (octobre 2016) : 2990. http://dx.doi.org/10.1121/1.4969260.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Giron, Franck, Hilmar Lehnert et Jens Blauert. « Virtual‐acoustics research at the Ruhr University of Bochum−with some remarks on the virtual‐acoustics scene in Europe ». Journal of the Acoustical Society of America 92, no 4 (octobre 1992) : 2333. http://dx.doi.org/10.1121/1.404985.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Fischinger, Timo, Klaus Frieler et Jukka Louhivuori. « Influence of virtual room acoustics on choir singing. » Psychomusicology : Music, Mind, and Brain 25, no 3 (2015) : 208–18. http://dx.doi.org/10.1037/pmu0000117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bottalico, Pasquale, Lady C. Cantor Cutiva et Eric J. Hunter. « Vocal effort and fatigue in virtual room acoustics ». Journal of the Acoustical Society of America 140, no 4 (octobre 2016) : 3126. http://dx.doi.org/10.1121/1.4969787.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Groß-Vogt, Katharina, Marian Weger, Matthias Frank et Robert Höldrich. « Peripheral Sonification by Means of Virtual Room Acoustics ». Computer Music Journal 44, no 1 (2020) : 71–88. http://dx.doi.org/10.1162/comj_a_00553.

Texte intégral
Résumé :
AbstractPeripheral interaction is a new approach to conveying information at the periphery of human attention in which sound is so far largely underrepresented. We report on two experiments that explore the concept of sonifying information by adding virtual reverberation to real-world room acoustics. First, to establish proof of concept, we used the consumption of electricity in a kitchen to control its reverberation in real time. The results of a second, in-home experiment showed that at least three levels of information can be conveyed to the listeners with this technique without disturbing a main task being performed simultaneously. This number may be increased for sonifications that are less critical.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Svensson, Peter. « Auralization. Fundmamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality by Michael Vorländer ». Acta Acustica united with Acustica 94, no 4 (1 juillet 2008) : 643. http://dx.doi.org/10.3813/aaa.918076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lokki, Tapio, Jarmo Hiipakka, Rami Hänninen, Tommi Ilmonen, Lauri Savioja et Tapio Takala. « Realtime audiovisual rendering and contemporary audiovisual art ». Organised Sound 3, no 3 (décembre 1998) : 219–33. http://dx.doi.org/10.1017/s1355771898003069.

Texte intégral
Résumé :
Visual rendering is the process of creating synthetic images of digital models. The modelling of sound synthesis and propagation in a virtual space is called sound rendering. In this article we review different audiovisual rendering techniques suitable for realtime rendering of three-dimensional virtual worlds. Virtual environments are useful in various application areas, for example in architectural visualisation. With audiovisual rendering, lighting and acoustics of a modelled concert hall can be experienced early in the design stage of the building. In this article we demonstrate an interactive audiovisual rendering system where an animated virtual orchestra plays in a modelled concert hall. Virtual musicians are conducted by a real conductor who wears a wired data dress suit and a baton. The conductor and the audience hear the music rendered according to the acoustics of the virtual concert hall, creating a lifelike experience.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kunimoto, Toshifumi, et Masahiro Kakishita. « The VL1 virtual acoustic synthesizer ». Journal of the Acoustical Society of America 100, no 4 (octobre 1996) : 2810. http://dx.doi.org/10.1121/1.416575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Segura-Garcia, Jaume, Mario Montagud-Climent, Sebastià Mirasol-Menacho et Joan Oleza-Simó. « Theatrical virtual acoustic rendering with head movement interaction ». Artificial Intelligence for Engineering Design, Analysis and Manufacturing 33, no 03 (3 mai 2019) : 359–68. http://dx.doi.org/10.1017/s0890060419000192.

Texte intégral
Résumé :
AbstractNowadays, the use of virtual reality/virtual acoustics (VR/VA) in archaeology for rendering lost buildings is an important topic in the cultural heritage field. Moreover, the addition of additional senses apart from the sight increases the feeling of immersion in virtual environments. The aim of this paper is to show the interaction work developed in a VA system, based on Unity and FMOD, the graphical and acoustical reconstruction of an ancient building and the development of a VR goggles with headphones to render 3D audio and video interactively. This system has been implemented to render auralizations in a binaural system and has been applied to the renderization of an old and lost theatre in València (Spain). The first building of theatre was built in the 16th century, and was rebuilt several times until the 18th century. The auralization of several theatrical excerpts of different Spanish authors of that time is also presented. The integrated system has been subjectively evaluated, obtaining very satisfactory results.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tronchin, Lamberto, Francesca Merli, Massimiliano Manfren et Benedetto Nastasi. « Validation and application of three-dimensional auralisation during concert hall renovation ». Building Acoustics 27, no 4 (5 juin 2020) : 311–31. http://dx.doi.org/10.1177/1351010x20926791.

Texte intégral
Résumé :
During the renovation of auditoria and concert halls, the acoustic quality is normally evaluated from measurements of impulse responses. One possibility for evaluating the acoustic quality from the measurements (the simulations) consists of convolving anechoic music with the measured (or simulated) impulse responses. In this way, a psycho-acoustic test is achieved using a virtual sound field representation. The listening room ‘Arlecchino’ at the University of Bologna includes ambisonics (up to fifth order) and stereo-dipole playback for virtual reproduction of sound in rooms. In this article, the effectiveness of the listening room ‘Arlecchino’ is first analysed, comparing acoustic parameters obtained from binaural impulse responses measured in some opera houses (in Italy) and auditorium (in Japan) with those virtually measured after the virtual reconstruction obtained in the listening rooms. The similarity between real and virtual sound fields, has been evaluated by comparing different acoustic parameters calculated by real and virtual sound fields, in four halls in different configurations, by means of the stereo-dipole method. In the second part of the article, the listening room was used to analyse the variation in interaural cross-correlation measurements in rooms obtained considering different anechoic sound signals convolved with the binaural impulse responses, to quantify the variation of the interaural cross correlation with different motifs. For this purpose, two different musical instrument digital interface musical motifs, very different from each other for their music characteristics, have been considered. Moreover, for each musical motif, different sound characteristics (i.e. different musical instruments) were considered, to consider both the rhythmic and timbre aspect.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Bilbao, Stefan, et Jens Ahrens. « Modeling continuous source distributions in wave-based virtual acoustics ». Journal of the Acoustical Society of America 148, no 6 (décembre 2020) : 3951–62. http://dx.doi.org/10.1121/10.0002956.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Muehleisen, Ralph T. « Computer simulation and virtual experiments for architectural acoustics education ». Journal of the Acoustical Society of America 110, no 5 (novembre 2001) : 2697. http://dx.doi.org/10.1121/1.4777281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Devallez, Delphine, Federico Fontana et Davide Rocchesso. « Linearizing Auditory Distance Estimates by Means of Virtual Acoustics ». Acta Acustica united with Acustica 94, no 6 (1 novembre 2008) : 813–24. http://dx.doi.org/10.3813/aaa.918101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Rungta, Atul, Nicholas Rewkowski, Roberta Klatzky, Ming Lin et Dinesh Manocha. « Effects of virtual acoustics on dynamic auditory distance perception ». Journal of the Acoustical Society of America 141, no 4 (avril 2017) : EL427—EL432. http://dx.doi.org/10.1121/1.4981234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Bismor, Dariusz. « Optimal and Adaptive Virtual Unidirectional Sound Source in Active Noise Control ». Advances in Acoustics and Vibration 2008 (22 juin 2008) : 1–12. http://dx.doi.org/10.1155/2008/647318.

Texte intégral
Résumé :
One of the problems concerned with active noise control is the existence of acoustical feedback between the control value (“active” loudspeaker output) and the reference signal. Various experiments show that such feedback can seriously decrease effects of attenuation or even make the whole ANC system unstable. This paper presents a detailed analysis of one of possible approaches allowing to deal with acoustical feedback, namely, virtual unidirectional sound source. With this method, two loudspeakers are used together with control algorithm assuring that the combined behaviour of the pair makes virtual propagation of sound only in one direction. Two different designs are presented for the application of active noise control in an acoustic duct: analytical (leading to fixed controller) and adaptive. The algorithm effectiveness in simulations and real experiments for both solutions is showed, discussed, and compared.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Summers, Jason E. « Auralization : Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and Acoustic Virtual RealityAuralization : Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and Acoustic Virtual RealityMichaelVorländerSpringer-Verlag, Berlin, 2008. 335 pp. $129 (hardcover). ISBN : 978-3-540-48829-3 ». Journal of the Acoustical Society of America 123, no 6 (juin 2008) : 4028–29. http://dx.doi.org/10.1121/1.2908264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Jenny, Claudia, et Christoph Reuter. « Usability of Individualized Head-Related Transfer Functions in Virtual Reality : Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization ». JMIR Serious Games 8, no 3 (8 septembre 2020) : e17576. http://dx.doi.org/10.2196/17576.

Texte intégral
Résumé :
Background In order to present virtual sound sources via headphones spatially, head-related transfer functions (HRTFs) can be applied to audio signals. In this so-called binaural virtual acoustics, the spatial perception may be degraded if the HRTFs deviate from the true HRTFs of the listener. Objective In this study, participants wearing virtual reality (VR) headsets performed a listening test on the 3D audio perception of virtual audiovisual scenes, thus enabling us to investigate the necessity and influence of the individualization of HRTFs. Two hypotheses were investigated: first, general HRTFs lead to limitations of 3D audio perception in VR and second, the localization model for stationary localization errors is transferable to nonindividualized HRTFs in more complex environments such as VR. Methods For the evaluation, 39 subjects rated individualized and nonindividualized HRTFs in an audiovisual virtual scene on the basis of 5 perceptual qualities: localizability, front-back position, externalization, tone color, and realism. The VR listening experiment consisted of 2 tests: in the first test, subjects evaluated their own and the general HRTF from the Massachusetts Institute of Technology Knowles Electronics Manikin for Acoustic Research database and in the second test, their own and 2 other nonindividualized HRTFs from the Acoustics Research Institute HRTF database. For the experiment, 2 subject-specific, nonindividualized HRTFs with a minimal and maximal localization error deviation were selected according to the localization model in sagittal planes. Results With the Wilcoxon signed-rank test for the first test, analysis of variance for the second test, and a sample size of 78, the results were significant in all perceptual qualities, except for the front-back position between own and minimal deviant nonindividualized HRTF (P=.06). Conclusions Both hypotheses have been accepted. Sounds filtered by individualized HRTFs are considered easier to localize, easier to externalize, more natural in timbre, and thus more realistic compared to sounds filtered by nonindividualized HRTFs.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Vorlaender, Michael. « Virtual acoustic environments for perception research ». Journal of the Acoustical Society of America 148, no 4 (octobre 2020) : 2641. http://dx.doi.org/10.1121/1.5147341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Poletto, Flavio, et Kees Wapenaar. « Virtual reflector representation theorem (acoustic medium) ». Journal of the Acoustical Society of America 125, no 4 (avril 2009) : EL111—EL116. http://dx.doi.org/10.1121/1.3081975.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Calamia, Paul, Benjamin Markham et U. Peter Svensson. « Diffraction culling for virtual‐acoustic simulations. » Journal of the Acoustical Society of America 125, no 4 (avril 2009) : 2586. http://dx.doi.org/10.1121/1.4783825.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Brugge, J. F., J. C. K. Chan, J. E. Hind, A. D. Musicant, P. W. F. Poon et R. A. Reale. « Neutral coding of virtual acoustic space ». Journal of the Acoustical Society of America 92, no 4 (octobre 1992) : 2333–34. http://dx.doi.org/10.1121/1.404987.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Chotiros, Nicholas P., et Marcia J. Isakson. « Acoustic virtual mass of granular media ». Journal of the Acoustical Society of America 121, no 2 (février 2007) : EL70—EL76. http://dx.doi.org/10.1121/1.2430763.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

van Munster, Bjorn. « Virtual reflections in electronic acoustic architecture ». Journal of the Acoustical Society of America 118, no 3 (septembre 2005) : 2017. http://dx.doi.org/10.1121/1.4785736.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lee, Nelson, et Julius O. Smith. « An online virtual acoustic guitar laboratory ». Journal of the Acoustical Society of America 120, no 5 (novembre 2006) : 3074. http://dx.doi.org/10.1121/1.4787392.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Neave-DiToro, Dorothy, Adrienne Rubinstein et Arlene C. Neuman. « Speech Recognition in Nonnative versus Native English-Speaking College Students in a Virtual Classroom ». Journal of the American Academy of Audiology 28, no 05 (mai 2017) : 404–14. http://dx.doi.org/10.3766/jaaa.15125.

Texte intégral
Résumé :
Background: Limited attention has been given to the effects of classroom acoustics at the college level. Many studies have reported that nonnative speakers of English are more likely to be affected by poor room acoustics than native speakers. An important question is how classroom acoustics affect speech perception of nonnative college students. Purpose: The combined effect of noise and reverberation on the speech recognition performance of college students who differ in age of English acquisition was evaluated under conditions simulating classrooms with reverberation times (RTs) close to ANSI recommended RTs. Research Design: A mixed design was used in this study. Study Sample: Thirty-six native and nonnative English-speaking college students with normal hearing, ages 18–28 yr, participated. Intervention: Two groups of nine native participants (native monolingual [NM] and native bilingual) and two groups of nine nonnative participants (nonnative early and nonnative late) were evaluated in noise under three reverberant conditions (0.03, 0.06, and 0.08 sec). Data Collection and Analysis: A virtual test paradigm was used, which represented a signal reaching a student at the back of a classroom. Speech recognition in noise was measured using the Bamford–Kowal–Bench Speech-in-Noise (BKB-SIN) test and signal-to-noise ratio required for correct repetition of 50% of the key words in the stimulus sentences (SNR-50) was obtained for each group in each reverberant condition. A mixed-design analysis of variance was used to determine statistical significance as a function of listener group and RT. Results: SNR-50 was significantly higher for nonnative listeners as compared to native listeners, and a more favorable SNR-50 was needed as RT increased. The most dramatic effect on SNR-50 was found in the group with later acquisition of English, whereas the impact of early introduction of a second language was subtler. At the ANSI standard’s maximum recommended RT (0.6 sec), all groups except the NM group exhibited a mild signal-to-noise ratio (SNR) loss. At the 0.8 sec RT, all groups exhibited a mild SNR loss. Conclusion: Acoustics in the classroom are an important consideration for nonnative speakers who are proficient in English and enrolled in college. To address the need for a clearer speech signal by nonnative students (and for all students), universities should follow ANSI recommendations, as well as minimize background noise in occupied classrooms. Behavioral/instructional strategies should be considered to address factors that cannot be compensated for through acoustic design.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Vaananen, R., et J. Huopaniemi. « Advanced AudioBIFS : Virtual Acoustics Modeling in MPEG-4 Scene Description ». IEEE Transactions on Multimedia 6, no 5 (octobre 2004) : 661–75. http://dx.doi.org/10.1109/tmm.2004.834864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Pedersini, F., A. Sarti et S. Tubaro. « Object-based sound synthesis for virtual environments-using musical acoustics ». IEEE Signal Processing Magazine 17, no 6 (2000) : 37–51. http://dx.doi.org/10.1109/79.888863.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Woszczyk, Wieslaw, Doyuen Ko et Jonathan Hong. « Towards the state of the art in virtual acoustics technology ». Journal of the Acoustical Society of America 133, no 5 (mai 2013) : 3401. http://dx.doi.org/10.1121/1.4805919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ko, Doyuen, Wieslaw Woszczyk et Jonathan Hong. « Augmented stage support in ensemble performance using virtual acoustics technology ». Journal of the Acoustical Society of America 133, no 5 (mai 2013) : 3402. http://dx.doi.org/10.1121/1.4805923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Park, Hyung-Woo, Sang-Hwi Jee et Myung-Jin Bae. « Virtual-Engine Sound Design through Internal-Combustion Engine Acoustics Analysis ». Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology 6, no 11 (30 novembre 2016) : 649–56. http://dx.doi.org/10.14257/ajmahs.2016.11.43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Vian, Jean‐Paul, et Xavier Meynial. « Virtual reflecting walls for improving the acoustics of defective halls ». Journal of the Acoustical Society of America 103, no 5 (mai 1998) : 2862. http://dx.doi.org/10.1121/1.421606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Красильников, Игорь Михайлович. « Instrumentation in Condition of Real and Virtual Acoustics Around Music ». Музыкальная академия, no 3(771) (30 septembre 2020) : 178–84. http://dx.doi.org/10.34690/94.

Texte intégral
Résumé :
Инструментовкой сегодня занимаются не только композиторы, создающие оркестровые партитуры, но и широкий круг музыкантов - профессионалов и любителей, работающих в различных жанрах электронной музыки. Электронная инструментовка имеет много общего с ее традиционным видом, поскольку в обоих случаях решаются одинаковые задачи: реализация колористического потенциала исходного текста, выстраивание композиционной формы с помощью выделения ее разделов, выстраивание фактуры путем заполнения акустического пространства и прорисовки ее пластов. Различия же обусловлены разной природой музыкального материала. В одном случае - это звучание оркестровых инструментов в концертном зале или на открытом воздухе. В другом - это множество синтезированных звуков в условиях виртуальной акустики, которая может быть представлена в самых разных вариантах. Электронная инструментовка, опираясь на сложившиеся в многовековой академической практике приемы, обогащается за счет использования новых звуков и возможностей управления виртуальным пространством их развертывания. Today, not only composers who create orchestral scores are engaged in instrumentation, but also a wide range of musicians-professionals and amateurs working in various genres of electronic music. Electronic instrumentation has a lot in common with its traditional form, since in both cases the same tasks are solved: realizing the color potential of the source text, building a compositional form by highlighting its sections, building a texture by filling the acoustic space and drawing its layers. The differences are due to the different nature of the sound material. In one case, it is the sound of orchestral instruments in a concert hall or in the open air. In the other case, it is a variety of synthesized sounds in a virtual acoustic environment, characterized by diversity and variability. Therefore, electronic instrumentation, based on the techniques developed in centuries-old practice, is enriched by the use of these new sounds and the ability to manage the virtual space of their deployment.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Li, Jie, Peter Gerstoft, Martin Siderius et Jun Fan. « Passive acoustic inversion with virtual head waves ». Journal of the Acoustical Society of America 146, no 4 (octobre 2019) : 2930. http://dx.doi.org/10.1121/1.5137178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie