Littérature scientifique sur le sujet « Virtual Hand »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Virtual Hand ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Virtual Hand"
Parusharamudu, Mr M., N. Vivek et Ch Sanjay Vardhan. « Virtual Mouse Using Hand Gestures ». International Journal of Research Publication and Reviews 6, no 4 (avril 2025) : 14589–93. https://doi.org/10.55248/gengpi.6.0425.1662.
Texte intégralWILLIAMS, N. W. « The Virtual Hand ». Journal of Hand Surgery 22, no 5 (octobre 1997) : 560–67. http://dx.doi.org/10.1016/s0266-7681(97)80345-2.
Texte intégralThakur, Shanu. « Virtual Mouse ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no 05 (11 mai 2024) : 1–5. http://dx.doi.org/10.55041/ijsrem33792.
Texte intégralCai, Xian Juan, Cheng Cheng et Umwali Marine. « Autonomous Virtual Hand Behavior Construction in Virtual Manufacturing Environment ». Applied Mechanics and Materials 743 (mars 2015) : 734–37. http://dx.doi.org/10.4028/www.scientific.net/amm.743.734.
Texte intégralKrishna, Golla Sai, G. S. S. M. Dileep et Dr R. Shalini. « Virtual Actions Using Hand Gestures ». IOSR Journal of Computer Engineering 26, no 6 (décembre 2024) : 43–48. https://doi.org/10.9790/0661-2606034348.
Texte intégralLi, JingRong, YuHua Xu, JianLong Ni et QingHui Wang. « Glove-based virtual hand grasping for virtual mechanical assembly ». Assembly Automation 36, no 4 (5 septembre 2016) : 349–61. http://dx.doi.org/10.1108/aa-01-2016-002.
Texte intégralReddy, Mr K. Vikram. « Hand Gesture based Virtual Mouse ». International Journal for Research in Applied Science and Engineering Technology 9, no 5 (31 mai 2021) : 1646–49. http://dx.doi.org/10.22214/ijraset.2021.34497.
Texte intégralMochimaru, Masaaki, Natsuki Miyata, Makiko Kouchi, Mitsunori Tada, Toru Nakata et Tsuneya Kurihara. « Digital Hand for Virtual Prototyping ». Reference Collection of Annual Meeting 2004.8 (2004) : 189–90. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_189.
Texte intégralIndraneel, K. J. S. S., P. Narendra Reddy, G. Leela Srinivas, J. Alekh Vara Prasad et Ananthoju Vijay Kumar. « Hand Gesture Based Virtual Mouse ». International Journal for Research in Applied Science and Engineering Technology 11, no 5 (31 mai 2023) : 2458–61. http://dx.doi.org/10.22214/ijraset.2023.51731.
Texte intégralKalipu, Ravi Kumar, Harish Kurmana, Divakar Allaboina, Sanjay Kumar Chilla, Bhavish Lakkavarapu et Ravi Kumar Nubothu. « Virtual Mouse Using Hand Gestures ». INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no 03 (31 mars 2025) : 1–9. https://doi.org/10.55041/ijsrem43518.
Texte intégralThèses sur le sujet "Virtual Hand"
Peña, Pitarch E. (Esteve). « Virtual human hand : grasping strategy and simulation ». Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6995.
Texte intégralEn esta tesis, nosotros hemos construido una mano virtual para simular la mano humana lo más realísticamente posible. Basado en la anatomía de la mano, hemos diseñado una mano con 25 grados de libertad (DOF), con cuatro de esos grados de libertad localizados en la unión carpometacarpal, para el dedo anular y el meñique. Estos cuatro grados de libertad permiten la simulación de la mano humana cuando esta se arquea. El dedo gordo ha sido diseñado con 5 DOF, los dedos, índice y medio tienen 4 DOF, la unión metacarpofalangeal tiene dos, y las uniones interfalangeales próxima y distal tienen uno cada una. Para los dedos anular y meñique, los 4 DOF tienen las mismas uniones más los cuatro descritos arriba.
El método de Denavit-Hartenberg (D-H) fue aplicado, debido a que cada dedo fue considerado como un rayo, esto es, una cadena cinemática abierta, con las uniones consideradas "revolutas". Las tablas D-H para cada dedo fueron mostradas y la aplicación de la cinemática directa e inversa permitió calcular todos los ángulos para cada unión [q1 . . . q25]T .
Antes de coger cualquier objeto, nuestro sistema comprueba si el objeto esta en el espacio de la mano, mediante el análisis del espacio de trabajo.
Se ha implementado un algoritmo semi-inteligente orientado a las tareas para las cuales el objeto ha sido diseñado, con el fin de tomar una decisión, una vez el usuario ha escogido el objeto y su tarea inherente. El algoritmo para coger ha sido implementado en un escenario virtual.
The human hand is the most complete tool, able to adapt to different surfaces and shapes and to touch and grasp. It is a direct connection between the exterior world and the brain. I. Kant (German philosopher) defined how the hand is an extension of the brain.
In this dissertation, we built a virtual human hand to simulate the human hand as realistically as possible. Based on the anatomy of the hand, we designed a hand with 25 degrees of freedom (DOF), with four of these degrees located in the carpometacarpal joint for the ring and small fingers. These four degrees permit the simulation of the human hand when it is arched. The thumb was designed with 5 DOF, the index and middle fingers have 4 DOF, in the metacarpophalangeal joint has two, and in the proximal interphalangeal joint and in the distal interphalangeal joint each have one. For the ring and small fingers, the 4 DOF are in similar joints plus as the four described above.
The Denavit-Hartenberg (D-H) method was applied because each finger was considered a ray, i.e., an open chain, with joints approximated to revolute joints. The D-H tables for each finger were shown, and the application of forward and inverse kinematics permit the calculation of all angles for each joint [q1 . . . q25]T .
Before grasping any object, our system checks the reachability of the object with workspace analysis.
Semi-intelligent task-oriented object grasping was implemented for making a decision once the user chooses the object and the task inherent to the object. The grasping algorithm was implemented in a virtual environment.
Peña, Pitarch Esteban. « Virtual Human Hand : Grasping Strategy and Simulation ». Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6995.
Texte intégralThe human hand is the most complete tool, able to adapt to different surfaces and shapes and to touch and grasp. It is a direct connection between the exterior world and the brain. I. Kant (German philosopher) defined how the hand is an extension of the brain.In this dissertation, we built a virtual human hand to simulate the human hand as realistically as possible. Based on the anatomy of the hand, we designed a hand with 25 degrees of freedom (DOF), with four of these degrees located in the carpometacarpal joint for the ring and small fingers. These four degrees permit the simulation of the human hand when it is arched. The thumb was designed with 5 DOF, the index and middle fingers have 4 DOF, in the metacarpophalangeal joint has two, and in the proximal interphalangeal joint and in the distal interphalangeal joint each have one. For the ring and small fingers, the 4 DOF are in similar joints plus as the four described above.The Denavit-Hartenberg (D-H) method was applied because each finger was considered a ray, i.e., an open chain, with joints approximated to revolute joints. The D-H tables for each finger were shown, and the application of forward and inverse kinematics permit the calculation of all angles for each joint [q1 . . . q25]T .Before grasping any object, our system checks the reachability of the object with workspace analysis.Semi-intelligent task-oriented object grasping was implemented for making a decision once the user chooses the object and the task inherent to the object. The grasping algorithm was implemented in a virtual environment.
Nasser, Bilal. « A virtual hand assessment system for efficient outcome measures of hand rehabilitation ». Thesis, University of Strathclyde, 2016. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27529.
Texte intégralVulgari, Sofia Kiriaki. « Hand Gesture based Telemedicine enabled by Mobile VR ». Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-88810.
Texte intégralChen, Hui, et 陳輝. « Building panoramas from photographs taken with a hand-held camera ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31242923.
Texte intégralChen, Hui. « Building panoramas from photographs taken with a hand-held camera / ». Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23668064.
Texte intégralYang, Xibei, et 杨曦贝. « A hand input-based approach to intuitive human-computer interactions in virtual reality ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45160557.
Texte intégralCruea, Mark Douglas. « The Virtual Hand : Exploring the Societal Effects of Video Game Industry Business Models ». Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1320430304.
Texte intégralLu, Yang. « Tour Into Painting : System Design for Virtual Exhibition of Chinese Hand-Scroll Painting ». Thesis, Ecole centrale de Nantes, 2022. https://tel.archives-ouvertes.fr/tel-03921024.
Texte intégralThe Chinese Hand-Scroll Painting (CHSP) is a typical Chinese painting form. The proper way to view a CHSP is scrolling it by hands. Watching a CHSP is considered as a fantasy experience of touring in its diegetic world. In current exhibitions of CHSPs, these points are not well represented. First, most of CHSPs are presented in glass boxes. Viewers can not manipulate it in scrolling manner. Second, the experience of touring into painting is only interpreted by simple annotations. Viewers can not gain a full experience based on them. This research aims to implementing these shortcoings by developing a VR-based exhibition system, which can synchronously simulate the ancient viewer's viewing experience in the real world and the touring experience in the diegetic world. The system is presented as a VR application that includes an interactive CHSP that can be manipulated according to the original principles. In a synchronous way, the VR user will be moved according to his focus point on the virtual CHSP, and then, an encompassing, random diegetic world will be built
Achibet, Merwan. « Contributions to the design of novel hand-based interaction techniques for virtual environments ». Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0031/document.
Texte intégralDirectly using our hands to explore virtual environments and interact with their contents produces a natural and compelling interaction. In this thesis, we propose contributions to improve hand-based interaction in the context of Virtual Reality by considering two main challenges: (1) improving the control of articulated hand models, and (2) providing haptic sensations with accessible techniques. We first address the challenge of interacting through realistic, articulated virtual hands and propose two methods for easing their control. As a first step, we reduce the degrees of freedom of complex hand models in order to make multi-finger interaction possible with common multi-touch interfaces. The resulting system allows users to control a virtual hand by performing gestures over a tactile tablet. Then, we take another approach and separate the degrees of freedom of one virtual hand between two haptic interfaces handled in parallel. Through this distribution of controls and feedback, users are exposed to a variety of haptic effects, otherwise restricted to complex haptic workstations. We then address the challenge of providing haptic sensations during hand-based interaction. To do so, we introduce different techniques that combine passive haptic feedback and pseudo-haptics as an alternative to complex and cumbersome active interfaces. We consider various types of interaction at different scales, starting with coarse interaction with the arm through an elastic armature that provides an egocentric and mobile haptic feedback. We then focus on object grasping and manipulation and propose an interaction paradigm that relies on elastic input devices for reproducing grasping gestures and perceiving modulable haptic properties through crossmodal feedback. Finally, we consider fine multi-finger manipulation and we propose a passive exoskeleton that constrains the digits individually, associated to a multi-finger pseudo-haptic feedback for simulating complex interaction with heterogeneous materials
Livres sur le sujet "Virtual Hand"
McCullough, Malcolm. Abstracting craft : The practiced digital hand. Cambridge, Mass : MIT Press, 1996.
Trouver le texte intégralSimpson, Ted L. Hands-on virtual computing. Australia : Course Technology/Cengage Learning, 2010.
Trouver le texte intégralSimpson, Ted L. Hands-on virtual computing. Australia : Course Technology/Cengage Learning, 2010.
Trouver le texte intégralDelogu, Cristina, dir. Tecnologia per il web learning. Florence : Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-571-9.
Texte intégralChapitres de livres sur le sujet "Virtual Hand"
Beckerle, Philipp. « Virtual Hand Experience ». Dans Springer Series on Touch and Haptic Systems, 41–53. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-38688-7_4.
Texte intégralPietroszek, Krzysztof. « Virtual Hand Metaphor in Virtual Reality ». Dans Encyclopedia of Computer Graphics and Games, 1–3. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-08234-9_178-1.
Texte intégralPietroszek, Krzysztof. « Virtual Hand Metaphor in Virtual Reality ». Dans Encyclopedia of Computer Graphics and Games, 1991–93. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-23161-2_178.
Texte intégralMahmoud, Shady Abdelghaffar, Ahmed K. Emara et Joseph Styron. « Hand and Wrist ». Dans The Principles of Virtual Orthopedic Assessment, 41–63. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80402-2_5.
Texte intégralElsdon, Joshua, et Yiannis Demiris. « Augmented Reality Instructions for Shared Control Hand-held Robotic System ». Dans Virtual Reality, 159–66. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003340003-9.
Texte intégralPeña-Pitarch, Esteban, Inmaculada Puig de la Bellacasa, Jesus Fernando Padilla Magaña, Anas Al Omar et Iñaki Alcelay Larrión. « Virtual Human Hand : Wrist Movements ». Dans Advances in Simulation and Digital Human Modeling, 304–11. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79763-8_37.
Texte intégralSpar, Ira, et Antonietta Catanzariti. « The Hearing Hand ». Dans Antiquities Smuggling in the Real and Virtual World, 96–134. London : Routledge, 2021. http://dx.doi.org/10.4324/9781003023043-5.
Texte intégralRey, Beatriz, José A. Lozano, Mariano Alcañiz, Luciano Gamberini, Merche Calvet, Daniel Kerrigan et Francesco Martino. « Super-Feet : A Wireless Hand-Free Navigation System for Virtual Environments ». Dans Virtual Reality, 348–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73335-5_38.
Texte intégralSchäfer, Alexander, Gerd Reis et Didier Stricker. « Controlling Continuous Locomotion in Virtual Reality with Bare Hands Using Hand Gestures ». Dans Virtual Reality and Mixed Reality, 191–205. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16234-3_11.
Texte intégralIkram, Warda, Yoonji Jeong, Byeonggwon Lee, Kyhyun Um et Kyungeun Cho. « Smart Virtual Lab Using Hand Gestures ». Dans Lecture Notes in Electrical Engineering, 165–70. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47487-7_25.
Texte intégralActes de conférences sur le sujet "Virtual Hand"
Patil, Manjiri, Palak Patil, Vedashree Deshpande et Asst Prof Tanvi Patil. « Virtual White Board using Hand Gestures ». Dans 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI), 899–905. IEEE, 2024. https://doi.org/10.1109/icdici62993.2024.10810808.
Texte intégralSai, K. Chenchu Naga, S. Shargunam, K. Surendra Reddy, K. Bheemendra et K. Santhosh Reddy. « Virtual Mouse using Hand Gestures-Eye Speech Recognition ». Dans 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI), 1459–67. IEEE, 2024. https://doi.org/10.1109/icdici62993.2024.10810795.
Texte intégralVamossy, Zoltan, Andras Toth et Balazs Benedek. « Virtual Hand - Hand Gesture Recognition System ». Dans 2007 5th International Symposium on Intelligent Systems and Informatics. IEEE, 2007. http://dx.doi.org/10.1109/sisy.2007.4342632.
Texte intégralZeng, Botao, Zhiquan Feng et Xiaohui Yang. « Virtual Hand Position Correction Algorithm Based on Virtual Hand Interaction ». Dans ICCDE 2020 : 2020 The 6th International Conference on Computing and Data Engineering. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3379247.3379258.
Texte intégralHwang, Jane, Jaehoon Jung et Gerard Jounghyun Kim. « Hand-held virtual reality ». Dans the ACM symposium. New York, New York, USA : ACM Press, 2006. http://dx.doi.org/10.1145/1180495.1180568.
Texte intégralGeylani, Sefa, Nurettin Senyer et Recai Oktas. « Prosthesis hand design — Part I : Virtual hand simulator ». Dans 2009 International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2009. http://dx.doi.org/10.1109/icaict.2009.5372557.
Texte intégralCanales, Ryan, Aline Normoyle, Yu Sun, Yuting Ye, Massimiliano Di Luca et Sophie Jörg. « Virtual Grasping Feedback and Virtual Hand Ownership ». Dans SAP '19 : ACM Symposium on Applied Perception 2019. New York, NY, USA : ACM, 2019. http://dx.doi.org/10.1145/3343036.3343132.
Texte intégralClack, Lauren, Christian Hirt, Marcel Wenger, Dirk Saleschus, Andreas Kunz et Hugo Sax. « VIRTUE - A Virtual Reality Trainer for Hand Hygiene ». Dans 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2018. http://dx.doi.org/10.1109/iisa.2018.8633588.
Texte intégralDuver, Matt, Noah Wiederhold, Maria Kyrarini, Sean Banerjee et Natasha Kholgade Banerjee. « VR-Hand-in-Hand : Using Virtual Reality (VR) Hand Tracking For Hand-Object Data Annotation ». Dans 2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR). IEEE, 2024. http://dx.doi.org/10.1109/aixvr59861.2024.00055.
Texte intégralSteed, Anthony, et Vit Drga. « Tomato Presence : Virtual Hand Ownership with a Disappearing Hand ». Dans 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, 2023. http://dx.doi.org/10.1109/vrw58643.2023.00167.
Texte intégralRapports d'organisations sur le sujet "Virtual Hand"
Kostenko, E. V., L. V. Petrova, I. V. Pogonchenkova et A. S. Polischuk. Technical task «Cognitive-motor training of fine hand function and subject-manipulative activity with double and triple tasks in a virtual environment». OFERNIO, juillet 2022. http://dx.doi.org/10.12731/ofernio.2022.25034.
Texte intégralLeeb, Helmut, Richard J. deBoer, Ian Thompson et Paraskevi Dimitriou. Summary Report of the IAEA Consultants’ Meetings of the International Nuclear Data Evaluation Network (INDEN) on the Evaluation of Light Elements (3). IAEA Nuclear Data Section, juillet 2021. http://dx.doi.org/10.61092/iaea.x6kd-w5qa.
Texte intégralBenekohal, Rahim, et Hongjae Jeon. Results of Work Zone Queue Analysis Training Classes. Illinois Center for Transportation, novembre 2023. http://dx.doi.org/10.36501/0197-9191/23-024.
Texte intégralCilliers, Jacobus, Brahm Fleisch, Janeli Kotzé, Nompumelelo Mohohlwane, Stephen Taylor et Tshegofatso Thulare. Can Virtual Replace In-person Coaching ? Experimental Evidence on Teacher Professional Development and Student Learning in South Africa. Research on Improving Systems of Education (RISE), janvier 2021. http://dx.doi.org/10.35489/bsg-rise-wp_2020/050.
Texte intégralRobayo Pinzon, Oscar, et Magda Páez Torres. La generación hiperconectada. Universidad del Rosario, septembre 2022. http://dx.doi.org/10.12804/dvcn_10336.35988_num6.
Texte intégralGonzález, María P., et Carlos Scartascini. Research Insights : How Can the Full Potential of Telemedicine Be Unlocked ? Inter-American Development Bank, novembre 2023. http://dx.doi.org/10.18235/0005266.
Texte intégralSkelton-Macedo, Mary Caroline, et Fabio Gregori. Modelos híbridos de enseñanza y aprendizaje. Fundación Carolina, juillet 2022. http://dx.doi.org/10.33960/issn-e.1885-9119.dt73.
Texte intégralNkwenti, Michael N. Viable Learning Pathways Back into Schooling for Out-of-School Youths in Cameroon. Sous la direction de Tony Mays. Commonwealth of Learning (COL), février 2023. http://dx.doi.org/10.56059/11599/5230.
Texte intégralBedford, Juliet. SSHAP Roundtable : 2021 Ebola Outbreak in Guinea. Institute of Development Studies (IDS), mars 2021. http://dx.doi.org/10.19088/sshap.2021.019.
Texte intégralChong, Alberto E., et Eliana La Ferrara. Television and Divorce : Evidence from Brazilian Novelas. Inter-American Development Bank, janvier 2009. http://dx.doi.org/10.18235/0010906.
Texte intégral