Littérature scientifique sur le sujet « Visual place recognition »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Visual place recognition ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Visual place recognition"
Lowry, Stephanie, Niko Sunderhauf, Paul Newman, John J. Leonard, David Cox, Peter Corke et Michael J. Milford. « Visual Place Recognition : A Survey ». IEEE Transactions on Robotics 32, no 1 (février 2016) : 1–19. http://dx.doi.org/10.1109/tro.2015.2496823.
Texte intégralTorii, Akihiko, Josef Sivic, Masatoshi Okutomi et Tomas Pajdla. « Visual Place Recognition with Repetitive Structures ». IEEE Transactions on Pattern Analysis and Machine Intelligence 37, no 11 (1 novembre 2015) : 2346–59. http://dx.doi.org/10.1109/tpami.2015.2409868.
Texte intégralGrill-Spector, Kalanit, et Nancy Kanwisher. « Visual Recognition ». Psychological Science 16, no 2 (février 2005) : 152–60. http://dx.doi.org/10.1111/j.0956-7976.2005.00796.x.
Texte intégralZeng, Zhiqiang, Jian Zhang, Xiaodong Wang, Yuming Chen et Chaoyang Zhu. « Place Recognition : An Overview of Vision Perspective ». Applied Sciences 8, no 11 (15 novembre 2018) : 2257. http://dx.doi.org/10.3390/app8112257.
Texte intégralMasone, Carlo, et Barbara Caputo. « A Survey on Deep Visual Place Recognition ». IEEE Access 9 (2021) : 19516–47. http://dx.doi.org/10.1109/access.2021.3054937.
Texte intégralStumm, Elena S., Christopher Mei et Simon Lacroix. « Building Location Models for Visual Place Recognition ». International Journal of Robotics Research 35, no 4 (28 avril 2015) : 334–56. http://dx.doi.org/10.1177/0278364915570140.
Texte intégralWang, Bo, Xin-sheng Wu, An Chen, Chun-yu Chen et Hai-ming Liu. « The Research Status of Visual Place Recognition ». Journal of Physics : Conference Series 1518 (avril 2020) : 012039. http://dx.doi.org/10.1088/1742-6596/1518/1/012039.
Texte intégralHorst, Michael, et Ralf Möller. « Visual Place Recognition for Autonomous Mobile Robots ». Robotics 6, no 2 (17 avril 2017) : 9. http://dx.doi.org/10.3390/robotics6020009.
Texte intégralOertel, Amadeus, Titus Cieslewski et Davide Scaramuzza. « Augmenting Visual Place Recognition With Structural Cues ». IEEE Robotics and Automation Letters 5, no 4 (octobre 2020) : 5534–41. http://dx.doi.org/10.1109/lra.2020.3009077.
Texte intégralChen, Baifan, Xiaoting Song, Hongyu Shen et Tao Lu. « Hierarchical Visual Place Recognition Based on Semantic-Aggregation ». Applied Sciences 11, no 20 (14 octobre 2021) : 9540. http://dx.doi.org/10.3390/app11209540.
Texte intégralThèses sur le sujet "Visual place recognition"
Stumm, Elena. « Location models for visual place recognition ». Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30341/document.
Texte intégralThis thesis deals with the task of appearance-based mapping and place recognition for mobile robots. More specifically, this work aims to identify how location models can be improved by exploring several existing and novel location representations in order to better exploit the available visual information. Appearance-based mapping and place recognition presents a number of challenges, including making reliable data-association decisions given repetitive and self-similar scenes (perceptual aliasing), variations in view-point and trajectory, appearance changes due to dynamic elements, lighting changes, and noisy measurements. As a result, choices about how to model and compare observations of locations is crucial to achieving practical results. This includes choices about the types of features extracted from imagery, how to define the extent of a location, and how to compare locations. Along with investigating existing location models, several novel methods are developed in this work. These are developed by incorporating information about the underlying structure of the scene through the use of covisibility graphs which capture approximate geometric relationships between local landmarks in the scene by noting which ones are observed together. Previously, the range of a location generally varied between either using discrete poses or loosely defined sequences of poses, facing problems related to perceptual aliasing and trajectory invariance respectively. Whereas by working with covisibility graphs, scenes are dynamically retrieved as clusters from the graph in a way which adapts to the environmental structure and given query. The probability of a query observation coming from a previously seen location is then obtained by applying a generative model such that the uniqueness of an observation is accounted for. Behaviour with respect to observation errors, mapping errors, perceptual aliasing, and parameter sensitivity are examined, motivating the use of a novel normalization scheme and observation likelihoods representations. The normalization method presented in this work is robust to redundant locations in the map (from missed loop-closures, for example), and results in place recognition which now has sub-linear complexity in the number of locations in the map. Beginning with bag-of-words representations of locations, location models are extended in order to include more discriminative structural information from the covisibility map. This results in various representations ranging between unstructured sets of features and full graphs of features, providing a tradeoff between complexity and recognition performance
Vysotska, Olga [Verfasser]. « Visual Place Recognition in Changing Environments / Olga Vysotska ». Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/119900538X/34.
Texte intégralVysotska, Olga [Verfasser]. « Visual Place Recognition in Changing Environments / Olga Vysotska ». Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1217404473/34.
Texte intégralQiao, Yongliang. « Place recognition based visual localization in changing environments ». Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA004/document.
Texte intégralIn many applications, it is crucial that a robot or vehicle localizes itself within the world especially for autonomous navigation and driving. The goal of this thesis is to improve place recognition performance for visual localization in changing environment. The approach is as follows: in off-line phase, geo-referenced images of each location are acquired, features are extracted and saved. While in the on-line phase, the vehicle localizes itself by identifying a previously-visited location through image or sequence retrieving. However, visual localization is challenging due to drastic appearance and illumination changes caused by weather conditions or seasonal changing. This thesis addresses the challenge of improving place recognition techniques through strengthen the ability of place describing and recognizing. Several approaches are proposed in this thesis:1) Multi-feature combination of CSLBP (extracted from gray-scale image and disparity map) and HOG features is used for visual localization. By taking the advantages of depth, texture and shape information, visual recognition performance can be improved. In addition, local sensitive hashing method (LSH) is used to speed up the process of place recognition;2) Visual localization across seasons is proposed based on sequence matching and feature combination of GIST and CSLBP. Matching places by considering sequences and feature combination denotes high robustness to extreme perceptual changes;3) All-environment visual localization is proposed based on automatic learned Convolutional Network (ConvNet) features and localized sequence matching. To speed up the computational efficiency, LSH is taken to achieve real-time visual localization with minimal accuracy degradation
Lowry, Stephanie Margaret. « Visual place recognition for persistent robot navigation in changing environments ». Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/79404/1/Stephanie_Lowry_Thesis.pdf.
Texte intégralNeubert, Peer. « Superpixels and their Application for Visual Place Recognition in Changing Environments ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-190241.
Texte intégralPepperell, Edward. « Visual sequence-based place recognition for changing conditions and varied viewpoints ». Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/93741/1/Edward_Pepperell_Thesis.pdf.
Texte intégralGarg, Sourav. « Robust visual place recognition under simultaneous variations in viewpoint and appearance ». Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134410/1/Sourav%20Garg%20Thesis.pdf.
Texte intégralStone, Thomas Jonathan. « Mechanisms of place recognition and path integration based on the insect visual system ». Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28909.
Texte intégralHausler, Stephen D. « Appearance and viewpoint invariant visual place recognition using multi-scale and multi-modality systems ». Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/226953/1/Stephen_Hausler_Thesis.pdf.
Texte intégralLivres sur le sujet "Visual place recognition"
Solebo, Ameenat Lola. Identification of visual impairments. Sous la direction de Alan Emond. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198788850.003.0021.
Texte intégralBouzas, Antia Mato, et Lorenzo Casini, dir. Migration in the Making of the Gulf Space : Social, Political, and Cultural Dimensions. Berghahn Books, 2022. http://dx.doi.org/10.3167/9781800733503.
Texte intégralKleege, Georgina. More than Meets the Eye. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190604356.001.0001.
Texte intégralChapitres de livres sur le sujet "Visual place recognition"
Qi, Junkun, Rui Wang, Chuan Wang et Xiaochun Cao. « Coarse-to-Fine Visual Place Recognition ». Dans Neural Information Processing, 28–39. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92273-3_3.
Texte intégralTsintotas, Konstantinos A., Loukas Bampis et Antonios Gasteratos. « Dynamic Places’ Definition for Sequence-Based Visual Place Recognition ». Dans Online Appearance-Based Place Recognition and Mapping, 55–69. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09396-8_4.
Texte intégralPanphattarasap, Pilailuck, et Andrew Calway. « Visual Place Recognition Using Landmark Distribution Descriptors ». Dans Computer Vision – ACCV 2016, 487–502. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54190-7_30.
Texte intégraldos Santos, Filipe Neves, Paulo Cerqueira Costa et António Paulo Moreira. « Visual Signature for Place Recognition in Indoor Scenarios ». Dans Lecture Notes in Electrical Engineering, 647–56. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10380-8_62.
Texte intégralGong, Mingying, Lifeng Sun, Shiqiang Yang et Yun Yang. « Robust Place Recognition by Avoiding Confusing Features and Fast Geometric Re-ranking ». Dans Computational Visual Media, 210–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34263-9_27.
Texte intégralXu, Zhenyu, Qieshi Zhang, Fusheng Hao, Ziliang Ren, Yuhang Kang et Jun Cheng. « VGG-CAE : Unsupervised Visual Place Recognition Using VGG16-Based Convolutional Autoencoder ». Dans Pattern Recognition and Computer Vision, 91–102. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88007-1_8.
Texte intégralAli, Abbas M., et Tarik A. Rashid. « Kernel Visual Keyword Description for Object and Place Recognition ». Dans Advances in Intelligent Systems and Computing, 27–38. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-28658-7_3.
Texte intégralJafar, Fairul Azni, Nurul Azma Zakaria, Ahamad Zaki Mohamed Noor et Kazutaka Yokota. « Environmental Visual Features Based Place Recognition in Manufacturing Environment ». Dans Lecture Notes in Mechanical Engineering, 47–59. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8954-3_6.
Texte intégralDu, Dapeng, Na Liu, Xiangyang Xu et Gangshan Wu. « Don’t Be Confused : Region Mapping Based Visual Place Recognition ». Dans Advances in Multimedia Information Processing – PCM 2017, 467–76. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77383-4_46.
Texte intégralMihankhah, Ehsan, et Danwei Wang. « Avoiding to Face the Challenges of Visual Place Recognition ». Dans Advances in Intelligent Systems and Computing, 738–49. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01054-6_52.
Texte intégralActes de conférences sur le sujet "Visual place recognition"
Garg, Sourav, Tobias Fischer et Michael Milford. « Where Is Your Place, Visual Place Recognition ? » Dans Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/603.
Texte intégralAlijani, Farid, Jukka Peltomaki, Jussi Puura, Heikki Huttunen, Joni-Kristian Kamarainen et Esa Rahtu. « Long-term Visual Place Recognition ». Dans 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9956392.
Texte intégralTorii, Akihiko, Josef Sivic, Toma Pajdla et Masatoshi Okutomi. « Visual Place Recognition with Repetitive Structures ». Dans 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013. http://dx.doi.org/10.1109/cvpr.2013.119.
Texte intégralStumm, Elena, Christopher Mei, Simon Lacroix et Margarita Chli. « Location graphs for visual place recognition ». Dans 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015. http://dx.doi.org/10.1109/icra.2015.7139964.
Texte intégralGehrig, Mathias, Elena Stumm, Timo Hinzmann et Roland Siegwart. « Visual place recognition with probabilistic voting ». Dans 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989362.
Texte intégralKim, Yong Nyeon, Dong Wook Ko et Il Hong Suh. « Visual navigation using place recognition with visual line words ». Dans 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2014. http://dx.doi.org/10.1109/urai.2014.7057494.
Texte intégralHansen, Peter, et Brett Browning. « Visual place recognition using HMM sequence matching ». Dans 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). IEEE, 2014. http://dx.doi.org/10.1109/iros.2014.6943207.
Texte intégralStumm, Elena, Christopher Mei, Simon Lacroix, Juan Nieto, Marco Hutter et Roland Siegwart. « Robust Visual Place Recognition with Graph Kernels ». Dans 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.491.
Texte intégralCamara, Luis G., et Libor Preucil. « Spatio-Semantic ConvNet-Based Visual Place Recognition ». Dans 2019 European Conference on Mobile Robots (ECMR). IEEE, 2019. http://dx.doi.org/10.1109/ecmr.2019.8870948.
Texte intégralHafez, A. H. Abdul, Saed Alqaraleh et Ammar Tello. « Encoded Deep Features for Visual Place Recognition ». Dans 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302266.
Texte intégral