Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Visual place recognition.

Articles de revues sur le sujet « Visual place recognition »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Visual place recognition ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Lowry, Stephanie, Niko Sunderhauf, Paul Newman, et al. "Visual Place Recognition: A Survey." IEEE Transactions on Robotics 32, no. 1 (2016): 1–19. http://dx.doi.org/10.1109/tro.2015.2496823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Torii, Akihiko, Josef Sivic, Masatoshi Okutomi, and Tomas Pajdla. "Visual Place Recognition with Repetitive Structures." IEEE Transactions on Pattern Analysis and Machine Intelligence 37, no. 11 (2015): 2346–59. http://dx.doi.org/10.1109/tpami.2015.2409868.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Grill-Spector, Kalanit, and Nancy Kanwisher. "Visual Recognition." Psychological Science 16, no. 2 (2005): 152–60. http://dx.doi.org/10.1111/j.0956-7976.2005.00796.x.

Texte intégral
Résumé :
What is the sequence of processing steps involved in visual object recognition? We varied the exposure duration of natural images and measured subjects' performance on three different tasks, each designed to tap a different candidate component process of object recognition. For each exposure duration, accuracy was lower and reaction time longer on a within-category identification task (e.g., distinguishing pigeons from other birds) than on a perceptual categorization task (e.g., birds vs. cars). However, strikingly, at each exposure duration, subjects performed just as quickly and accurately o
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zeng, Zhiqiang, Jian Zhang, Xiaodong Wang, Yuming Chen, and Chaoyang Zhu. "Place Recognition: An Overview of Vision Perspective." Applied Sciences 8, no. 11 (2018): 2257. http://dx.doi.org/10.3390/app8112257.

Texte intégral
Résumé :
Place recognition is one of the most fundamental topics in the computer-vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of knowledge accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place-recognition literature. Since condition-invariant and viewpoint-invariant features are essential factors to long-term robust visual place-recognition systems, we start with
Styles APA, Harvard, Vancouver, ISO, etc.
5

Masone, Carlo, and Barbara Caputo. "A Survey on Deep Visual Place Recognition." IEEE Access 9 (2021): 19516–47. http://dx.doi.org/10.1109/access.2021.3054937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Stumm, Elena S., Christopher Mei, and Simon Lacroix. "Building Location Models for Visual Place Recognition." International Journal of Robotics Research 35, no. 4 (2015): 334–56. http://dx.doi.org/10.1177/0278364915570140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Bo, Xin-sheng Wu, An Chen, Chun-yu Chen, and Hai-ming Liu. "The Research Status of Visual Place Recognition." Journal of Physics: Conference Series 1518 (April 2020): 012039. http://dx.doi.org/10.1088/1742-6596/1518/1/012039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Horst, Michael, and Ralf Möller. "Visual Place Recognition for Autonomous Mobile Robots." Robotics 6, no. 2 (2017): 9. http://dx.doi.org/10.3390/robotics6020009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Oertel, Amadeus, Titus Cieslewski, and Davide Scaramuzza. "Augmenting Visual Place Recognition With Structural Cues." IEEE Robotics and Automation Letters 5, no. 4 (2020): 5534–41. http://dx.doi.org/10.1109/lra.2020.3009077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Baifan, Xiaoting Song, Hongyu Shen, and Tao Lu. "Hierarchical Visual Place Recognition Based on Semantic-Aggregation." Applied Sciences 11, no. 20 (2021): 9540. http://dx.doi.org/10.3390/app11209540.

Texte intégral
Résumé :
A major challenge in place recognition is to be robust against viewpoint changes and appearance changes caused by self and environmental variations. Humans achieve this by recognizing objects and their relationships in the scene under different conditions. Inspired by this, we propose a hierarchical visual place recognition pipeline based on semantic-aggregation and scene understanding for the images. The pipeline contains coarse matching and fine matching. Semantic-aggregation happens in residual aggregation of visual information and semantic information in coarse matching, and semantic assoc
Styles APA, Harvard, Vancouver, ISO, etc.
11

Arshad, Saba, and Gon-Woo Kim. "Semantic Visual Place Recognition in Dynamic Urban Environment." Journal of Korea Robotics Society 17, no. 3 (2022): 334–38. http://dx.doi.org/10.7746/jkros.2022.17.3.334.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Waheed, Maria, Michael Milford, Klaus McDonald-Maier, and Shoaib Ehsan. "Improving Visual Place Recognition Performance by Maximising Complementarity." IEEE Robotics and Automation Letters 6, no. 3 (2021): 5976–83. http://dx.doi.org/10.1109/lra.2021.3088779.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ozdemir, Anil, Mark Scerri, Andrew B. Barron, et al. "EchoVPR: Echo State Networks for Visual Place Recognition." IEEE Robotics and Automation Letters 7, no. 2 (2022): 4520–27. http://dx.doi.org/10.1109/lra.2022.3150505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Imbriaco, Raffaele, Egor Bondarev, and Peter H. N. de With. "Multiscale Convolutional Descriptor Aggregation for Visual Place Recognition." Electronic Imaging 2020, no. 10 (2020): 313–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.10.ipas-312.

Texte intégral
Résumé :
Visual place recognition using query and database images from different sources remains a challenging task in computer vision. Our method exploits global descriptors for efficient image matching and local descriptors for geometric verification. We present a novel, multi-scale aggregation method for local convolutional descriptors, using memory vector construction for efficient aggregation. The method enables to find preliminary set of image candidate matches and remove visually similar but erroneous candidates. We deploy the multi-scale aggregation for visual place recognition on 3 large-scale
Styles APA, Harvard, Vancouver, ISO, etc.
15

Vysotska, Olga, and Cyrill Stachniss. "Effective Visual Place Recognition Using Multi-Sequence Maps." IEEE Robotics and Automation Letters 4, no. 2 (2019): 1730–36. http://dx.doi.org/10.1109/lra.2019.2897160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Dai, Deyun, Zonghai Chen, Jikai Wang, Peng Bao, and Hao Zhao. "Robust Visual Place Recognition Based on Context Information." IFAC-PapersOnLine 52, no. 22 (2019): 49–54. http://dx.doi.org/10.1016/j.ifacol.2019.11.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Pronobis, A., B. Caputo, P. Jensfelt, and H. I. Christensen. "A realistic benchmark for visual indoor place recognition." Robotics and Autonomous Systems 58, no. 1 (2010): 81–96. http://dx.doi.org/10.1016/j.robot.2009.07.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

V, Rostami, Rahman Ramli Abd, Samsudin Khairulmizam, and Iqbal Saripan M. "Place recognition using semantic concepts of visual words." Scientific Research and Essays 6, no. 17 (2011): 3751–59. http://dx.doi.org/10.5897/sre11.861.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Cadena, Cesar, John McDonald, John J. Leonard, and Jose Neira. "Place Recognition using Near and Far Visual Information." IFAC Proceedings Volumes 44, no. 1 (2011): 6822–28. http://dx.doi.org/10.3182/20110828-6-it-1002.03029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ibelaiden, Farah, and Slimane Larabi. "Visual place representation and recognition from depth images." International Journal of Computational Vision and Robotics 1, no. 1 (2022): 1. http://dx.doi.org/10.1504/ijcvr.2022.10052055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Leyva-Vallina, Maria, Nicola Strisciuglio, Manuel Lopez Antequera, Radim Tylecek, Michael Blaich, and Nicolai Petkov. "TB-Places: A Data Set for Visual Place Recognition in Garden Environments." IEEE Access 7 (2019): 52277–87. http://dx.doi.org/10.1109/access.2019.2910150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lu, Feng, Baifan Chen, Xiang-Dong Zhou, and Dezhen Song. "STA-VPR: Spatio-Temporal Alignment for Visual Place Recognition." IEEE Robotics and Automation Letters 6, no. 3 (2021): 4297–304. http://dx.doi.org/10.1109/lra.2021.3067623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

CHEN, Yutian, Wenyan GAN, Shanshan JIAO, Youwei XU, and Yuntian FENG. "Salient Feature Selection for CNN-Based Visual Place Recognition." IEICE Transactions on Information and Systems E101.D, no. 12 (2018): 3102–7. http://dx.doi.org/10.1587/transinf.2018edp7175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Juan Cao. "Image Comparison for Place Recognition in Visual Robotic Navigation." Journal of Convergence Information Technology 8, no. 7 (2013): 1123–30. http://dx.doi.org/10.4156/jcit.vol8.issue7.138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Xu, Ming, Niko Sunderhauf, and Michael Milford. "Corrections to “Probabilistic Visual Place Recognition for Hierarchical Localization”." IEEE Robotics and Automation Letters 6, no. 3 (2021): 6139. http://dx.doi.org/10.1109/lra.2021.3090115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Huang, Guanyu, An Chen, Hongxia Gao, and Puguang Yang. "SMCN: Simplified mini-column network for visual place recognition." Journal of Physics: Conference Series 2024, no. 1 (2021): 012032. http://dx.doi.org/10.1088/1742-6596/2024/1/012032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wang, Min-Liang, and Huei-Yung Lin. "An extended-HCT semantic description for visual place recognition." International Journal of Robotics Research 30, no. 11 (2011): 1403–20. http://dx.doi.org/10.1177/0278364911406760.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Mao, Jun, Xiaoping Hu, Xiaofeng He, Lilian Zhang, Liao Wu, and Michael J. Milford. "Learning to Fuse Multiscale Features for Visual Place Recognition." IEEE Access 7 (2019): 5723–35. http://dx.doi.org/10.1109/access.2018.2889030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lowry, Stephanie, and Henrik Andreasson. "Lightweight, Viewpoint-Invariant Visual Place Recognition in Changing Environments." IEEE Robotics and Automation Letters 3, no. 2 (2018): 957–64. http://dx.doi.org/10.1109/lra.2018.2793308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chancan, Marvin, Luis Hernandez-Nunez, Ajay Narendra, Andrew B. Barron, and Michael Milford. "A Hybrid Compact Neural Architecture for Visual Place Recognition." IEEE Robotics and Automation Letters 5, no. 2 (2020): 993–1000. http://dx.doi.org/10.1109/lra.2020.2967324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Fan, Chen, Zetao Chen, Adam Jacobson, Xiaoping Hu, and Michael Milford. "Biologically-inspired visual place recognition with adaptive multiple scales." Robotics and Autonomous Systems 96 (October 2017): 224–37. http://dx.doi.org/10.1016/j.robot.2017.07.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ujala Razaq, Muhammad Muneeb Ullah, and Muhammad Usman. "Local and Deep Features for Robust Visual Indoor Place Recognition." Open Journal of Science and Technology 3, no. 2 (2020): 140–47. http://dx.doi.org/10.31580/ojst.v3i2.1475.

Texte intégral
Résumé :
This study focuses on the area of visual indoor place recognition (e.g., in an office setting, automatically recognizing different places, such as offices, corridor, wash room, etc.). The potential applications include robot navigation, augmented reality, and image retrieval. However, the task is extremely demanding because of the variations in appearance in such dynamic setups (e.g., view-point, occlusion, illumination, scale, etc.). Recently, Convolutional Neural Network (CNN) has emerged as a powerful learning mechanism, able to learn deep higher-level features when provided with a comparat
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Zhen, Lin Zhou, and Zeqin Lin. "Robust Visual Place Recognition Method for Robot Facing Drastic Illumination Changes." Journal of Physics: Conference Series 2209, no. 1 (2022): 012001. http://dx.doi.org/10.1088/1742-6596/2209/1/012001.

Texte intégral
Résumé :
Abstract The robustness of visual place recognition determines the accuracy of the SLAM to construct the environmental map. However, when the robot moves in the outdoor environment for a long time, it must face the challenge of drastic illumination changes (time shift, season or rain and fog weather factors), which leads to the robot’s ability to identify places is greatly restricted. This paper proposes a method for visual place recognition that is more robust to severe illumination changes. First, a generative adversarial network is introduced into visual SLAM to enhance the quality of candi
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tsintotas, Konstantinos A., Loukas Bampis, and Antonios Gasteratos. "Tracking‐DOSeqSLAM: A dynamic sequence‐based visual place recognition paradigm." IET Computer Vision 15, no. 4 (2021): 258–73. http://dx.doi.org/10.1049/cvi2.12041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lee, Keundong, Seungjae Lee, Won Jo Jung, and Kee Tae Kim. "Fast and Accurate Visual Place Recognition Using Street-View Images." ETRI Journal 39, no. 1 (2017): 97–107. http://dx.doi.org/10.4218/etrij.17.0116.0034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wu, Lin, Teng Wang, and Changyin Sun. "Multi-Modal Visual Place Recognition in Dynamics-Invariant Perception Space." IEEE Signal Processing Letters 28 (2021): 2197–201. http://dx.doi.org/10.1109/lsp.2021.3123907.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Tang, Li, Yue Wang, Qimeng Tan, and Rong Xiong. "Explicit feature disentanglement for visual place recognition across appearance changes." International Journal of Advanced Robotic Systems 18, no. 6 (2021): 172988142110374. http://dx.doi.org/10.1177/17298814211037497.

Texte intégral
Résumé :
In the long-term deployment of mobile robots, changing appearance brings challenges for localization. When a robot travels to the same place or restarts from an existing map, global localization is needed, where place recognition provides coarse position information. For visual sensors, changing appearances such as the transition from day to night and seasonal variation can reduce the performance of a visual place recognition system. To address this problem, we propose to learn domain-unrelated features across extreme changing appearance, where a domain denotes a specific appearance condition,
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhang Guoshan, 张国山, 张培崇 Zhang Peichong, and 王欣博 Wang Xinbo. "Visual place recognition based on multi-level feature difference map." Infrared and Laser Engineering 47, no. 2 (2018): 203004. http://dx.doi.org/10.3788/irla201847.0203004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ferrarini, Bruno, Maria Waheed, Sania Waheed, Shoaib Ehsan, Michael J. Milford, and Klaus D. McDonald-Maier. "Exploring Performance Bounds of Visual Place Recognition Using Extended Precision." IEEE Robotics and Automation Letters 5, no. 2 (2020): 1688–95. http://dx.doi.org/10.1109/lra.2020.2969197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fischer, Tobias, and Michael Milford. "Event-Based Visual Place Recognition With Ensembles of Temporal Windows." IEEE Robotics and Automation Letters 5, no. 4 (2020): 6924–31. http://dx.doi.org/10.1109/lra.2020.3025505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Oh, J. H., and B. H. Lee. "Dynamic programming approach to visual place recognition in changing environments." Electronics Letters 53, no. 6 (2017): 391–93. http://dx.doi.org/10.1049/el.2017.0037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Cieslewski, Titus, and Davide Scaramuzza. "Efficient Decentralized Visual Place Recognition Using a Distributed Inverted Index." IEEE Robotics and Automation Letters 2, no. 2 (2017): 640–47. http://dx.doi.org/10.1109/lra.2017.2650153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kenshimov, Chingiz, Loukas Bampis, Beibut Amirgaliyev, Marat Arslanov, and Antonios Gasteratos. "Deep learning features exception for cross-season visual place recognition." Pattern Recognition Letters 100 (December 2017): 124–30. http://dx.doi.org/10.1016/j.patrec.2017.10.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Gronát, Petr, Josef Sivic, Guillaume Obozinski, and Tomas Pajdla. "Learning and Calibrating Per-Location Classifiers for Visual Place Recognition." International Journal of Computer Vision 118, no. 3 (2016): 319–36. http://dx.doi.org/10.1007/s11263-015-0878-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Rebai, Karima, Ouahiba Azouaoui, and Nouara Achour. "Fuzzy ART-based place recognition for visual loop closure detection." Biological Cybernetics 107, no. 2 (2012): 247–59. http://dx.doi.org/10.1007/s00422-012-0539-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

KAMIYA, Kazuhisa, Tomoya IWAZAKI, Yudai MORISHITA, Tomoe HIROKI, and Kanji TANAKA. "Cross-Domain Visual Place Recognition Using Landscape Image Big Data." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2022 (2022): 2P1—H09. http://dx.doi.org/10.1299/jsmermd.2022.2p1-h09.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Hettiarachchi, Dulmini, Ye Tian, Han Yu, and Shunsuke Kamijo. "Text Spotting towards Perceptually Aliased Urban Place Recognition." Multimodal Technologies and Interaction 6, no. 11 (2022): 102. http://dx.doi.org/10.3390/mti6110102.

Texte intégral
Résumé :
Recognizing places of interest (POIs) can be challenging for humans, especially in foreign environments. In this study, we leverage smartphone sensors (i.e., camera, GPS) and deep learning algorithms to propose an intelligent solution to recognize POIs in an urban environment. Recent studies have approached landmark recognition as an image retrieval problem. However, visual similarity alone is not robust against challenging conditions such as extreme appearance variance and perceptual aliasing in urban environments. To this end, we propose to fuse visual, textual, and positioning information.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Keetha, Nikhil Varma, Michael Milford, and Sourav Garg. "A Hierarchical Dual Model of Environment- and Place-Specific Utility for Visual Place Recognition." IEEE Robotics and Automation Letters 6, no. 4 (2021): 6969–76. http://dx.doi.org/10.1109/lra.2021.3096751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Qiao, Yongliang, та Zhao Zhang. "Visual Localization by Place Recognition Based on Multifeature (D-λLBP++HOG)". Journal of Sensors 2017 (2017): 1–18. http://dx.doi.org/10.1155/2017/2157243.

Texte intégral
Résumé :
Visual localization is widely used in the autonomous navigation system and Advanced Driver Assistance Systems (ADAS). This paper presents a visual localization method based on multifeature fusion and disparity information using stereo images. We integrate disparity information into complete center-symmetric local binary patterns (CSLBP) to obtain a robust global image description (D-CSLBP). In order to represent the scene in depth, multifeature fusion of D-CSLBP and HOG features provides valuable information and permits decreasing the effect of some typical problems in place recognition such a
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yang, Bo, Xiaosu Xu, Jun Li, and Hong Zhang. "Landmark Generation in Visual Place Recognition Using Multi-Scale Sliding Window for Robotics." Applied Sciences 9, no. 15 (2019): 3146. http://dx.doi.org/10.3390/app9153146.

Texte intégral
Résumé :
Landmark generation is an essential component in landmark-based visual place recognition. In this paper, we present a simple yet effective method, called multi-scale sliding window (MSW), for landmark generation in order to improve the performance of place recognition. In our method, we generate landmarks that form a uniform distribution in multiple landmark scales (sizes) within an appropriate range by a process that samples an image with a sliding window. This is in contrast to conventional methods of landmark generation that typically depend on detecting objects whose size distributions are
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!