Littérature scientifique sur le sujet « Vortex-motion. Leading edges (Aerodynamics) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Vortex-motion. Leading edges (Aerodynamics) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Vortex-motion. Leading edges (Aerodynamics)"
Buzica, Andrei, Lisa Debschütz, Florian Knoth, and Christian Breitsamter. "Leading-Edge Roughness Affecting Diamond-Wing Aerodynamic Characteristics." Aerospace 5, no. 3 (2018): 98. http://dx.doi.org/10.3390/aerospace5030098.
Texte intégralZhao, Hong Yan, Peng Fei Zhang, and Yun Ma. "The Influence of the Flight Aerodynamic for Interactions of Wings and Body of the Honeybee." Applied Mechanics and Materials 670-671 (October 2014): 700–704. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.700.
Texte intégralWillmott, Alexander P., Charles P. Ellington, and Adrian L. R. Thomas. "Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 352, no. 1351 (1997): 303–16. http://dx.doi.org/10.1098/rstb.1997.0022.
Texte intégralViswanath, P. R., and S. R. Patil. "Aerodynamic characteristics of delta wing–body combinations at high angles of attack." Aeronautical Journal 98, no. 975 (1994): 159–70. http://dx.doi.org/10.1017/s0001924000049848.
Texte intégralSaputra, Do Young Byun, Yung Hwan Byun, and Hoon Cheol Park. "Experimental and Numerical Study on Flapping Wing Kinematics and Aerodynamics of Coleoptera." Key Engineering Materials 326-328 (December 2006): 175–78. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.175.
Texte intégralLiu, H., C. P. Ellington, K. Kawachi, C. van den Berg, and A. P. Willmott. "A computational fluid dynamic study of hawkmoth hovering." Journal of Experimental Biology 201, no. 4 (1998): 461–77. http://dx.doi.org/10.1242/jeb.201.4.461.
Texte intégralLamar, J. "A career in vortices and edge forces." Aeronautical Journal 116, no. 1176 (2012): 101–52. http://dx.doi.org/10.1017/s0001924000006667.
Texte intégralEllington, C. P. "The novel aerodynamics of insect flight: applications to micro-air vehicles." Journal of Experimental Biology 202, no. 23 (1999): 3439–48. http://dx.doi.org/10.1242/jeb.202.23.3439.
Texte intégralThielicke, William, and Eize J. Stamhuis. "The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale." Journal of Fluid Mechanics 768 (March 4, 2015): 240–60. http://dx.doi.org/10.1017/jfm.2015.71.
Texte intégralHan, Jong-Seob, Jo Won Chang, and Jae-Hung Han. "The advance ratio effect on the lift augmentations of an insect-like flapping wing in forward flight." Journal of Fluid Mechanics 808 (November 3, 2016): 485–510. http://dx.doi.org/10.1017/jfm.2016.629.
Texte intégralThèses sur le sujet "Vortex-motion. Leading edges (Aerodynamics)"
Pino, Romainville Francisco Adolfo. "The effect of adding multiple triangular vortex generators on the leading edge of a wing." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4405.
Texte intégralYoung, John Aerospace Civil & Mechanical Engineering Australian Defence Force Academy UNSW. "Numerical simulation of the unsteady aerodynamics of flapping airfoils." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Aerospace, Civil and Mechanical Engineering, 2005. http://handle.unsw.edu.au/1959.4/38656.
Texte intégralWabick, Kevin. "Leading-edge vortex development on a maneuvering wing in a uniform flow." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/6873.
Texte intégralKoyama, Ye-Bonne. "Characterisation and aerodynamic impact of leading-edge vortices on propeller blades." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX021/document.
Texte intégralBerdon, Randall. "Flow structures and aerodynamic loads of a rolling wing in a free stream." Thesis, University of Iowa, 2019. https://ir.uiowa.edu/etd/6705.
Texte intégralSchaeffler, Norman Walter. "All The King's Horses: The Delta Wing Leading-Edge Vortex System Undergoing Vortex Breakdown: A Contribution to its characterization and Control under Dynamic Conditions." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30454.
Texte intégralGunasekaran, Sidaard. "Relationship Between the Free Shear Layer, the Wingtip Vortex and Aerodynamic Efficiency." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1470231642.
Texte intégralFrank, Spencer. "Vortex tilting and the enhancement of spanwise flow in flapping wing flight." Honors in the Major Thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/384.
Texte intégralJaouani, Nassim. "Modelling of installation effects on the tonal noise radiated by counter-rotating open rotors." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC002.
Texte intégralNabawy, Mostafa. "Design of insect-scale flapping wing vehicles." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/design-of-insectscale-flapping-wing-vehicles(5720b8af-a755-4c54-beb6-ba6ef1a13168).html.
Texte intégralLivres sur le sujet "Vortex-motion. Leading edges (Aerodynamics)"
Kogan, M. N. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate): Under cooperative agreement NCC1-241. National Aeronautics and Space Administration, Langley Research Center, 1997.
Trouver le texte intégralKogan, M. N. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate): Under cooperative agreement NCC1-241. National Aeronautics and Space Administration, Langley Research Center, 1997.
Trouver le texte intégralKogan, M. N. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate). National Aeronautics and Space Administration, Langley Research Center, 1997.
Trouver le texte intégralKogan, M. N. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate): Under cooperative agreement NCC1-241. National Aeronautics and Space Administration, Langley Research Center, 1997.
Trouver le texte intégralTerry, Ng T., Nelson Robert C. 1942-, United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., University of Notre Dame. Dept. of Aerospace and Mechanical Engineering., and Ames Research Center, eds. Visualization of leading edge vortices on a series of flat plate delta wings. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., ed. An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows. Aerodynamics Laboratory, Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, 1991.
Trouver le texte intégralE, Reubush David, Haddad Raymond C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program, eds. Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Trouver le texte intégralE, Reubush David, Haddad Raymond C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Trouver le texte intégralLeading edge vortex dynamics on a pitching delta wing: A thesis. Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, 1990.
Trouver le texte intégralE, Byrd James, Wesselmann Gary F, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Trouver le texte intégralChapitres de livres sur le sujet "Vortex-motion. Leading edges (Aerodynamics)"
Yehia Zakaria, Mohamed. "Unsteady Aerodynamics of Highly Maneuvering Flyers." In Biomimetics. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94231.
Texte intégralCantor, Brian. "The Burgers Vector." In The Equations of Materials. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851875.003.0011.
Texte intégralActes de conférences sur le sujet "Vortex-motion. Leading edges (Aerodynamics)"
Lozano, Rafael, Vrishank Raghav, and Narayanan Komerath. "Aerodynamics of a Yawed Blade in Reverse Flow." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85947.
Texte intégralHart, Adam, and Lawrence Ukeiley. "Unsteady Aerodynamics on a Low Aspect Ratio Flat Plate." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30846.
Texte intégralYin, Bo, and Guowei Yang. "Investigation of Obstacle Effects on the Aerodynamic Performance of Flapping Wings." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69264.
Texte intégralREYNOLDS, G. A., and A. A. ABTAHI. "Instabilities in Leading-Edge Vortex Development." In 5th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2424.
Texte intégralMitchell, Anthony, Pascal Molton, Didier Barberis, and Jean Delery. "Control of leading-edge vortex breakdown by trailing edge injection." In 17th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3202.
Texte intégralLEMAY, S., S. BATILL, and R. NELSON. "Leading edge vortex dynamics on a pitching delta wing." In 6th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2559.
Texte intégralLimacher, Eric J., and David E. Rival. "On the Stable Leading Edge Vortex in Rotating Systems." In 32nd AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2700.
Texte intégralHuang, X., Y. Sun, E. Hanff, X. Huang, Y. Sun, and E. Hanff. "Further investigations of leading-edge vortex breakdown over delta wings." In 15th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2263.
Texte intégralO'NEIL, P., R. BARNETT, and C. LOUIE. "Numerical simulation of leading-edge vortex breakdown using an Eulercode." In 7th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2189.
Texte intégralvan Noordenburg, M., and H. Hoejmakers. "Compressible inviscid flow solutions for isolated leading-edge vortex cores." In 16th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2528.
Texte intégral