Littérature scientifique sur le sujet « Vortex Simulation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Vortex Simulation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Vortex Simulation"

1

Liu, Han Xiao, Zhong Liu, Huai Liang Li, Xin Xin Feng et Zhen Zhong Xing. « Multiple Vortex Body Vortex Numerical Simulation ». Advanced Materials Research 328-330 (septembre 2011) : 1755–58. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.1755.

Texte intégral
Résumé :
In this paper, the continuity equation, momentum equation and the k-ε turbulence equation were introduced to simulate the flow field of the multiple vortex bodies in different spacing cases. Found that each vortex body had good effect in producing vortex, and the greater flow field spacing, the smaller the highest velocity; the turbulence intensity is increasing gradually from the former vortex body to the next one, and there may be a best spacing between the vortex bodies which makes the best turbulent intensity. All of these theories provide a train of thought for the turbulent coalescence mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ashworth Briggs, Alexander, Alan Fleming, Jonathan Duffy et Jonathan R. Binns. « Tracking the vortex core from a surface-piercing flat plate by particle image velocimetry and numerical simulation ». Proceedings of the Institution of Mechanical Engineers, Part M : Journal of Engineering for the Maritime Environment 233, no 3 (23 juillet 2018) : 793–808. http://dx.doi.org/10.1177/1475090218776202.

Texte intégral
Résumé :
The wake flow around the tip of a surface piercing flat plate at an angle of incidence was studied using two-dimensional particle image velocimetry as part of benchmarking the particle image velocimetry technique on the moving carriage in the Australian Maritime College towing tank. Particle image velocimetry results were found to be in close agreement with those of the benchmarking work presented by the Hydro Testing Alliance, and a method of tracking the tip-vortex core near a free surface throughout numerical simulation has been demonstrated. Issues affecting signal to noise ratio, such as specula reflections from the free surface and model geometry were overcome through the use of fluorescing particles and a high-pass optical filter. Numerical simulations using the ANSYS CFX Solver with the volume of fluid method were validated against the experimental results, and a methodology was developed for tracking the location of the wandering vortex core experimentally and through simulation. The ability of the scale-adaptive simulation shear stress transport turbulence model and the shear stress transport model to simulate three-dimensional flow with high streamline curvature was compared. The scale-adaptive simulation shear stress transport turbulence model was found to provide a computationally less resource-intensive method of simulating a complex flow topology with large eddies, providing an insight into a possible cause of tip-vortex aperiodic wandering motion. At high angles of attack, vortex shedding from the leading edge separation of the test geometry is identified as a possible cause of the wandering phenomena. In this study, the vortex centre and point of extreme core velocity were found not to be co-located. The point of extreme stream wise velocity within the vortex core was found to be located within half the vortex radius of the vortex centre.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kerr, Robert M., et Fazle Hussain. « Simulation of vortex reconnection ». Physica D : Nonlinear Phenomena 37, no 1-3 (juillet 1989) : 474–84. http://dx.doi.org/10.1016/0167-2789(89)90151-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sun, Qiji, Chenxi Xu, Xuan Zou, Wei Guan, Xiao Liu, Xu Yang et Ao Ren. « Shape Optimization of the Triangular Vortex Flowmeter Based on the LBM Method ». Symmetry 17, no 4 (31 mars 2025) : 534. https://doi.org/10.3390/sym17040534.

Texte intégral
Résumé :
In this paper, the D3Q19 multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) for large eddy simulation (LES) was employed to optimize the shape of the vortex generator in a triangular vortex flowmeter. The optimization process focused on the vortex shedding frequency, lift force per unit area, and symmetry of the vortex street. The optimal shape of the vortex generator was determined to feature a 180° incoming flow surface, a concave arc side with a curvature radius of 25 mm, and a fillet radius of 4 mm at the end. Numerical simulations revealed that the optimized vortex generator achieves a 2.72~13.8% increase in vortex shedding frequency and a 17.2~53.9% reduction in pressure drop and can adapt to the flow conditions of productivity fluctuations (6.498 × 105 ≤ Re ≤ 22.597 × 105) in the gas well production. The results demonstrated significant advantages, including low pressure loss, minimal secondary vortex generation, high vortex shedding frequency, and substantial lift force. These findings underscore the robustness and efficiency of the LBM-LES method in simulating complex flow dynamics and optimizing vortex generator designs.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Azarpira, Maryam, Amir Zarrati et Pouya Farrokhzad. « Comparison between the Lagrangian and Eulerian Approach in Simulation of Free Surface Air-Core Vortices ». Water 13, no 5 (7 mars 2021) : 726. http://dx.doi.org/10.3390/w13050726.

Texte intégral
Résumé :
The problematic consequences regarding formation of air-core vortices at the intakes and the drastic necessity of a thorough investigation into the phenomenon has resulted in particular attention being placed on Computational Fluid Dynamics (CFD) as an economically viable method. Two main approaches could be taken using CFD, namely the Eulerian and Lagrangian methods each of which is characterized by specific advantages and disadvantages. Whereas many researchers have used the Eulerian approach for vortex simulation, the Lagrangian approach has not been found in the literature. The present study dealt with the comparison of the Lagrangian and Eulerian approaches in the simulation of vortex flow. Simulations based on both approaches were carried out by solving the Navier–Stokes equations accompanied by the LES turbulence model. The results of the numerical model were evaluated in accordance with a physical model for steady vortex flow using particle image velocimetry (PIV), revealing that both approaches are sufficiently capable of simulating the vortex flow but with the difference that the Lagrangian method has greater computational cost with less accuracy.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Reyes, Jefferson Alberto Porras, Luis Miguel Navarrete Lopez, Jorge Ivan Armijo Martinez et Daniel Andrés Navarrete Proaño. « Hydrodynamic phenomena in a vertical-axis vortex turbine ». Region - Water Conservancy 7, no 1 (25 juillet 2024) : 105. http://dx.doi.org/10.32629/rwc.v7i1.2431.

Texte intégral
Résumé :
The present work aims to develop a safely designed simulation by generating a sustainable hydraulic system coupled with energy study needs, which collaborates with less costs and more benefits. Based on simulations with the scale model using the ANSYS tool, it aims to find the efficiency at the time of executing this simulation at full scale. Mainly the motivations of the work are based on new methods of obtaining energy for the conservation of the environment. This is how the idea of designing and simulating a new gravitational vortex turbine system, with geometries according to what has been found in the literature and in previous studies, is materialized. In this way we proceed to design and simulate a turbine device composed of a vortex impeller that can resist erosion and sediments and allows the development of a gravitational vortex with a considerable hydraulic power. Once the turbine geometry is defined, a modeling is made in ANSYS software, in order to know the behavior of the vortex, define the geometric configuration of it, which will also work under the concept of "drag".
Styles APA, Harvard, Vancouver, ISO, etc.
7

Liu, Yongwei, Yalin Li et Dejiang Shang. « The Generation Mechanism of the Flow-Induced Noise from a Sail Hull on the Scaled Submarine Model ». Applied Sciences 9, no 1 (29 décembre 2018) : 106. http://dx.doi.org/10.3390/app9010106.

Texte intégral
Résumé :
Flow-induced noise from the sail hull, which is induced by the horseshoe vortex, the boundary layer separation and the tail vortex shedding, is a significant problem for the underwater vehicles, while has not been adequately studied. We have performed simulations and experiments to reveal the noise generation mechanism from these flows using the scaled sail hull with part of a submarine body. The large eddy simulation and the wavenumber–frequency spectrum are adopted for simulations. The frequency ranges from 10 Hz to 2000 Hz. The simulation results show that the flow-induced noise with the frequency less than 500 Hz is mainly generated by the horseshoe vortex; the flow-induced noise because of the tail vortex shedding is mainly within the frequency of shedding vortex, which is 595 Hz in the study; the flow-induced noise caused by the boundary layer separation lies in the whole frequency range. Moreover, we have conducted the experiments in a gravity water tunnel, and the experimental results are in good accordance with the simulation results. The results can lay the foundation for the design of flow control devices to suppress and reduce the flow-induced noise from the sail hull.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liu, Xiao Lei, Song Li, Jing Shan Jiao, Yong Xue Liu, Lei Ming et Xiu Juan Liu. « Numerical Simulation of Tip Vortex in Air Refueling ». Advanced Materials Research 712-715 (juin 2013) : 1217–20. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.1217.

Texte intégral
Résumé :
Based on analysis on the tip vortex in air refueling, a model for simulating the tip vortex of air refueling is established in this paper, and the simulation results is studied. The results show that the established model is suitable for different aerial environments and mission requirements.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lu, Yixiong, Tongwen Wu, Xin Xu, Li Zhang et Min Chu. « Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model ». Atmosphere 11, no 6 (1 juin 2020) : 576. http://dx.doi.org/10.3390/atmos11060576.

Texte intégral
Résumé :
The Antarctic stratospheric final warming (SFW) is usually simulated with a substantial delay in climate models, and the corresponding temperatures in austral spring are lower than observations, implying insufficient stratospheric wave drag. To investigate the role of orographic gravity wave drag (GWD) in modeling the Antarctic SFW, in this study the orographic GWD parameterization scheme is modified in the middle-atmosphere version of the Beijing Climate Center Atmospheric General Circulation Model. A pair of simulations are conducted to compare two orographic GWD schemes in simulating the breakdown of the stratospheric polar vortex over Antarctica. The control simulation with the default orographic GWD scheme exhibits delayed vortex breakdown and the cold-pole bias seen in most climate models. In the simulation with modified orographic GWD scheme, the simulated vortex breaks down earlier by 8 days, and the associated cold-pole bias is reduced by more than 2 K. The modified scheme provides stronger orographic GWD in the lower stratosphere, which drives an accelerated polar downwelling branch of the Brewer–Dobson circulation and, in turn, produces adiabatic warming. Our study suggests that modifying orographic GWD parameterizations in climate models would be a valid way of improving the SFW simulation over Antarctica.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chiu, Ching-Kai, T. Machida, Yingyi Huang, T. Hanaguri et Fu-Chun Zhang. « Scalable Majorana vortex modes in iron-based superconductors ». Science Advances 6, no 9 (février 2020) : eaay0443. http://dx.doi.org/10.1126/sciadv.aay0443.

Texte intégral
Résumé :
The iron-based superconductor FeTexSe1−x is one of the material candidates hosting Majorana vortex modes residing in the vortex cores. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores having zero-bias peaks decreases with increasing magnetic field on the surface of FeTexSe1−x. The hybridization of two Majorana vortex modes cannot simply explain this phenomenon. We construct a three-dimensional tight-binding model simulating the physics of over a hundred Majorana vortex modes in FeTexSe1−x. Our simulation shows that the Majorana hybridization and disordered vortex distribution can explain the decreasing fraction of the zero-bias peaks observed in the experiment; the statistics of the energy peaks off zero energy in our Majorana simulation are in agreement with the experiment. These agreements lead to an important indication of scalable Majorana vortex modes in FeTexSe1−x. Thus, FeTexSe1−x can be one promising platform having scalable Majorana qubits for quantum computing.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Vortex Simulation"

1

Heidarinejad, Ghassem. « Vortex simulation of the reacting shear layer ». Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14432.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1989.
Title as it appears in M.I.T. Graduate List, Feb. 1989: Numerical simulation of reacting shear layer using vortex method.
Includes bibliographical references.
by Ghassem Heidarinejad.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Krishna, Vikas. « Numerical simulation of vortex shedding in oscillatory flows ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq25859.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vines, Neuwirth Mauricio Alfredo. « Vortex Methods for Fluid Simulation in Computer Graphics ». Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23647.

Texte intégral
Résumé :
Fluid simulations for computer graphics applications have attracted the attention of many researchers and practitioners due to the enhanced realism that natural phenomena simulation adds to graphical applications. Vortex methods are receiving increasing attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. However, vortex methods have not been developed yet to the level of other techniques for fluid simulation in computer graphics. In this work we present a novel simulation framework to model inviscid flows using Lagrangian vortex particle methods. We introduce novel stable methods to solve the vorticity flow equations that produce highly detailed visual fluid simulations. We incorporate the full interplay of solids and fluids in our framework. The coupling between free-form solids, represented by arbitrary surface meshes and fluids simulated with vortex methods, leads to visually rich simulations. Previous vortex simulators only focus on modeling the solid as a boundary for the flow. We model solid boundaries using an extended potential flow at the solid surface coupled with a boundary layer simulation. This allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces, which is calculated from the dynamics of vorticity in the flow and the rate of vorticity creation at solid surfaces. We demonstrate high quality results of our methods simulating flows around solid objects and solid object propulsion due to flows. This work ameliorates one of the important omissions in the development of vortex methods for computer graphics, which is the simulation of two-way coupling of solids and fluids.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sheikh, Amer Hussain. « The numerical simulation of compressible blade vortex interaction ». Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Radler, Karl Simon [Verfasser]. « Periodic Free Vortex Wake Simulation / Karl Simon Radler ». München : Verlag Dr. Hut, 2018. http://d-nb.info/1156510422/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Takeda, Kenji. « Parallel discrete vortex methods for viscous flow simulation ». Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pérez, Sánchez Jorge Manuel. « Numerical simulation of deceleration of an axisymmetric vortex ». Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/39023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mohammad, Abrar Hasan. « Numerical simulation of three dimensional vortex-dominated flows ». [Ames, Iowa : Iowa State University], 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Stein, Peter. « Numerical simulation and investigation of draft tube vortex flow ». Thesis, Coventry University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Asyikin, Muhammad Tedy. « CFD Simulation of Vortex Induced Vibration of a Cylindrical Structure ». Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18814.

Texte intégral
Résumé :
This thesis presents the investigation of the flow characteristic and vortex induced vibration (VIV) of a cylindrical structure due to the incompressible laminar and turbulent flow at Reynolds number 40, 100, 200 and 1000. The simulations were performed by solving the steady and transient (unsteady) 2D Navier-Stokes equation. For Reynolds number 40, the simulations were set as a steady and laminar flow and the SIMPLE and QUICK were used as the pressure-velocity coupling scheme and momentum spatial discretization respectively. Moreover, the transient turbulent flow was set for Re 100, 200 and 1000 and SIMPLE and LES (large Eddies Simulation) were selected as the pressure-velocity coupling solution and the turbulent model respectively. The drag and lift coefficient (Cd and Cl) were obtained and verified to the previous studies and showed a good agreement. Whilst the vibration frequency (fvib), the vortex shedding frequency (fv), the Strouhal number (St) and the amplitude of the vibration (A) were also measured.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Vortex Simulation"

1

Kuruvila, G. Three-dimensional simulation of vortex breakdown. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

D, Salas M., et Langley Research Center, dir. Three-dimensional simulation of vortex breakdown. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

D, Salas M., et Langley Research Center, dir. Three-dimensional simulation of vortex breakdown. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Inoue, Osamu. Vortex simulation of forced mixing layers. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Archambeau, F. P. A. Large-eddy simulation of turbulent vortex shedding. Manchester : UMIST, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hoeijmakers, H. W. M. Numerical simulation of leading-edge vortex flow. Amsterdam, Netherlands : National Aerospace Laboratories, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dougherty, N. Sam. Numerical simulation of the edge tone phenomenon. Huntsville, Ala : George C. Marshall Space Flight Center, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chen, Maozhang. Numerical simulation of Tollmien-Schlichting waves by use of a modified vortex particle-in-cell method. London : Imperial College of Science and Technology, Dept. of Aeronautics, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

J, McCroskey W., Ames Research Center et United States. Army Aviation Systems Command., dir. Tip vortices of wings in subsonic and transonic flow : A numerical simulation. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hand, M. Maureen. Mitigation of wind turbine/vortex interaction using disturbance accommodating control. Golden, Colo : National Renewable Energy Laboratory, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Vortex Simulation"

1

Meinke, M., J. Hofhaus et A. Abdelfattah. « Simulation of Vortex Ring Interaction ». Dans IUTAM Symposium on Dynamics of Slender Vortices, 105–16. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5042-2_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rizzi, Arthur, et Charles J. Purcell. « Large-Scale CYBER-205 Simulation of Vortex Flowfields Around Submarines ». Dans Maritime Simulation, 114–24. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82560-6_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Krasny, Robert. « Viscous Simulation of Wake Patterns ». Dans Vortex Flows and Related Numerical Methods, 145–51. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8137-0_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meiburg, E., et G. M. Homsy. « Vortex Methods for Porous Media Flows ». Dans Numerical Simulation in Oil Recovery, 199–225. New York, NY : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-6352-1_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Inoue, Osamu. « Direct Navier-Stokes Simulation of Sounds Generatei by Shock-Vortex / Vortex-Vortex Interactions ». Dans Recent Advances in DNS and LES, 27–36. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4513-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kuruvila, G., et M. D. Salas. « Three-dimensional simulation of vortex breakdown ». Dans Twelfth International Conference on Numerical Methods in Fluid Dynamics, 137–41. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-53619-1_146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ellzey, J. L., J. M. Picone et E. S. Oran. « Simulation of shock and vortex interactions ». Dans Shock Waves, 151–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Geurts, Bernard J., et Arkadiusz K. Kuczaj. « Wake-Vortex Decay in External Turbulence ». Dans Direct and Large-Eddy Simulation VII, 499–504. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3652-0_74.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Li, Hongshuai, Lei Tan et Huanxin Zhao. « Influence of Blade Geometry on Performance of Hydrogen Vortex Blower in Fuel Cell System ». Dans Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 163–73. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_18.

Texte intégral
Résumé :
AbstractHydrogen fuel cell has great potential in replacement of traditional fossil energy systems to decrease carbon dioxide emission. Vortex blower is a key device in the hydrogen recirculation system, which need to be studied deeply to improve the performance of the whole fuel cell. In this paper, the steady internal flow of a hydrogen vortex bower was numerical simulated, and the effect of blade number and blade flapping angle on the performance was studied. The simulation results were compared with experimental data, and the deviation of simulation in choking condition was observed. With the validated simulation method, the influence of blade number and flapping angle was studied. Higher blade number causes more friction, and less blade number leads to flow separation. The negative flapping angle also has the effect on depressing low-pressure region. This research illuminates the simulation method can be further applied to the aerodynamic study and structure optimization of vortex blower.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hoeijmakers, H. W. M. « Methods for Numerical Simulation of Leading Edge Vortex Flow ». Dans Studies of Vortex Dominated Flows, 223–69. New York, NY : Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4678-7_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Vortex Simulation"

1

HAFEZ, M., J. AHMAD, G. KURUVILA et M. SALAS. « Vortex breakdown simulation ». Dans 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1343.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

NAKAMURA, Y., A. LEONARD et P. SPALART. « Vortex breakdown simulation ». Dans 18th Fluid Dynamics and Plasmadynamics and Lasers Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1581.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Anand, Gaurav, et Will Graham. « Vortex Filament Simulation of Trailing Vortex Merger ». Dans 23rd AIAA Applied Aerodynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4854.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

HAFEZ, M., et J. AHMAD. « Vortex breakdown simulation. II ». Dans 26th Aerospace Sciences Meeting. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Walther, Jens H., Julian T. Sagredo et Petros Koumoutsakos. « SIMULATION OF PARTICULATE FLOWS USING VORTEX METHODS ». Dans Selected Papers of the First International Conference on Vortex Methods. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793232_0020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

FUJINAMI, T., G. DULIKRAVICH et A. HASSAN. « Free-vortex method simulation of unsteady airfoil/vortex interaction ». Dans 4th Applied Aerodynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Xin, Kenji Kawashima et Toshiharu Kagawa. « Dynamic modeling of vortex levitation ». Dans 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing (ICSC). IEEE, 2008. http://dx.doi.org/10.1109/asc-icsc.2008.4675358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

INOUE, OSAMU. « Simulation of a vortex ring ». Dans 1st National Fluid Dynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3571.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

HITZEL, STEPHAN. « Wing vortex-flows up into vortex breakdown - A numerical simulation ». Dans 6th Applied Aerodynamics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Meneghini, J. R., F. Saltara et C. R. Siqueira. « Numerical Simulation of Vortex Shedding from an Oscillating Circular Cylinder using a Discrete Vortex Method ». Dans Selected Papers of the First International Conference on Vortex Methods. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793232_0008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Vortex Simulation"

1

Ghoniem, Ahmed F. Numerical Simulation of Turbulent Combustion Using Vortex Methods. Fort Belvoir, VA : Defense Technical Information Center, janvier 1990. http://dx.doi.org/10.21236/ada219624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Anthony Leonard, Phillippe Chatelain et Michael Rebel. Bluff Body Flow Simulation Using a Vortex Element Method. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/947549.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Telste, John G., Roderick M. Coleman et Joseph J. Gorski. DTNS3D Computer Code Simulation of Tip-Vortex Formation : RANS Code Validation. Fort Belvoir, VA : Defense Technical Information Center, août 1997. http://dx.doi.org/10.21236/ada343797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

McKeehen, Phillip D., et Thomas J. Cord. Simulation Study of VISTA/F-16 Maneuverability Enhancement Using Forebody Vortex Control. Fort Belvoir, VA : Defense Technical Information Center, mai 1997. http://dx.doi.org/10.21236/ada327802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zabusky, N. J. Vortex Dynamics of Coherent and Chaotic Structures (Including Algorithms for Computer Simulations and Diagnosis). Fort Belvoir, VA : Defense Technical Information Center, décembre 1987. http://dx.doi.org/10.21236/ada193580.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie