Littérature scientifique sur le sujet « Wettability of vegetal surfaces »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Wettability of vegetal surfaces ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Wettability of vegetal surfaces"
Tita, SPS, R. Medeiros, JR Tarpani, E. Frollini et V. Tita. « Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin : Influence on impact strength and water absorption of phenolic composites ». Journal of Composite Materials 52, no 20 (25 janvier 2018) : 2743–53. http://dx.doi.org/10.1177/0021998317753886.
Texte intégralOsorio, Fernando, Gonzalo Valdés, Olivier Skurtys, Ricardo Andrade, Ricardo Villalobos-Carvajal, Andrea Silva-Weiss, Wladimir Silva-Vera, Begoña Giménez, Marcela Zamorano et Johana Lopez. « Surface Free Energy Utilization to Evaluate Wettability of Hydrocolloid Suspension on Different Vegetable Epicarps ». Coatings 8, no 1 (30 décembre 2017) : 16. http://dx.doi.org/10.3390/coatings8010016.
Texte intégralBartman, Marcin, Sebastian Balicki, Lucyna Hołysz et Kazimiera A. Wilk. « Surface Properties of Graffiti Coatings on Sensitive Surfaces Concerning Their Removal with Formulations Based on the Amino-Acid-Type Surfactants ». Molecules 28, no 4 (20 février 2023) : 1986. http://dx.doi.org/10.3390/molecules28041986.
Texte intégralConradi, Marjetka, Bojan Podgornik, Maja Remškar, Damjan Klobčar et Aleksandra Kocijan. « Tribological Evaluation of Vegetable Oil/MoS2 Nanotube-Based Lubrication of Laser-Textured Stainless Steel ». Materials 16, no 17 (26 août 2023) : 5844. http://dx.doi.org/10.3390/ma16175844.
Texte intégralWang, Bingjie, Ziqiong Geng, Bo Pan, Lei Jiang et Yong Lin. « Effect of Vegetable Oil Adjuvant on Wetting, Drift, and Deposition of Pesticide Droplets from UAV Sprayers on Litchi Leaves ». Agronomy 15, no 2 (24 janvier 2025) : 293. https://doi.org/10.3390/agronomy15020293.
Texte intégralAshokkumar, Saranya, Jens Adler-Nissen et Per Møller. « Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability ». Applied Surface Science 263 (décembre 2012) : 86–94. http://dx.doi.org/10.1016/j.apsusc.2012.09.002.
Texte intégralBaldin, Vitor, Leonardo Rosa Ribeiro da Silva, Rogério Valentim Gelamo, Andres Bustillo Iglesias, Rosemar Batista da Silva, Navneet Khanna et Alisson Rocha Machado. « Influence of Graphene Nanosheets on Thermo-Physical and Tribological Properties of Sustainable Cutting Fluids for MQL Application in Machining Processes ». Lubricants 10, no 8 (21 août 2022) : 193. http://dx.doi.org/10.3390/lubricants10080193.
Texte intégralMa, Cha, Yu Ping Yang et Long Li. « Study on Drilling Fluid Technology of Eliminating Bit Balling by Changing Wettability ». Advanced Materials Research 542-543 (juin 2012) : 1083–86. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.1083.
Texte intégralOrkoula, Malvina G., Petros G. Koutsoukos, Michel Robin, Olga Vizika et Louis Cuiec. « Wettability of CaCO3 surfaces ». Colloids and Surfaces A : Physicochemical and Engineering Aspects 157, no 1-3 (octobre 1999) : 333–40. http://dx.doi.org/10.1016/s0927-7757(99)00047-3.
Texte intégralVargha-Butler, E. I., E. Kiss, C. N. C. Lam, Z. Keresztes, E. Kálmán, L. Zhang et A. W. Neumann. « Wettability of biodegradable surfaces ». Colloid & ; Polymer Science 279, no 12 (1 décembre 2001) : 1160–68. http://dx.doi.org/10.1007/s003960100549.
Texte intégralThèses sur le sujet "Wettability of vegetal surfaces"
Bami, Chatenet Yann. « Modélisation analytique du mouillage sur des topographies multi-échelles complexes pour le design biomimétique de surfaces superhydrophobes ». Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0053.
Texte intégralA drop of water rolls on the sacred lotus leaf but stay fiercely anchored onto a rose petal. Both surfaces display a complex morphology at the micrometric and nanometric scales. Therefore, one could ask: how are their wettability and their morphology related? The purpose of this dissertation is to carry out a biomimetic approach in order to conceive superhydrophobic surfaces and to better understand nature’s strategies. In a first part, vegetal surfaces have been characterized by directly observing the wetting state they produce with the help of confocal microscopy. We demonstrate the fact that the sacred lotus produces a metastable mixed-state wetting that is characterized by a finite equilibrium anchorage depth of triple lines. On the other hand, a Wenzel-Wenzel hierarchical wetting state is observed on the rose petal, in spite of what literature suggests. From these experiments, key questions have been highlighted and confronted to the current models available within the literature. In a second part, two approaches to capillary phenomena have been adapted to the study of a composite wetting state produced by a multiscale topography. We introduce a complete parameterization allowing us to tackle the problem of the mixed-state wetting and its stability, to predict the value of the equilibrium anchorage depth on the sacred lotus leaf and to identify the contribution of its nanoscale topography to its wetting. Then, we thoroughly describe the mechanisms underlying the advancing and receding motions of triple lines and their recursive propagation across every topographical scale constituting a surface by introducing the notion of precursor motion. We highlight the effect of the equilibrium anchorage depth on the contact angle hysteresis and the role played by topographical subscales on the robustness of the composite wetting state. Through the experimental study of model surfaces manufactured by photolithography, we compare our predictions to reality. Eventually, in a third part, the conclusions drawn from our model are transposed into technical specifications for the conception of robust superhydrophobic surfaces, the strategy of the sacred lotus leaf is thoroughly described and two promising manufacturing processes are proposed through the recrystallization of natural wax and two-photon polymerization
Melberg, Brita. « Nanostructured surfaces with patterned wettability ». Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19410.
Texte intégralHobæk, Thor Christian. « Nanostructured PDMS surfaces with patterned wettability ». Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21045.
Texte intégralBadge, Ila. « Tuning Wettability And Adhesion Of Structured Surfaces ». University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1393716842.
Texte intégralZhang, Xueyun. « Wettability tuning by surface modification / ». View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20ZHANG.
Texte intégralFalah, Toosi Salma. « Superhydrophobic polymeric surfaces : fabrication, wettability, and antibbacterial activity ». Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62353.
Texte intégralApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Plaisance, Marc Charles. « Cellular Response to Surface Wettability Gradient on Microtextured Surfaces ». Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53730.
Texte intégralShirafkan, Abbas. « Wettability and hydrophilicity of rigid and soft contact lens surfaces ». Thesis, City University London, 1997. http://openaccess.city.ac.uk/8385/.
Texte intégralSernek, Milan. « Comparative Analysis of Inactivated Wood Surfaces ». Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27429.
Texte intégralPh. D.
Tow, Emily Winona. « Bubble behavior in subcooled flow boiling on surfaces of variable wettability ». Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75682.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 59).
Flow boiling is important in energy conversion and thermal management due to its potential for very high heat fluxes. By improving understanding of the conditions leading to bubble departure, surfaces can be designed that increase heat transfer coefficients in flow boiling. Bubbles were visualized during subcooled nucleate flow boiling of water on a surface of variable wettability. Images obtained from the videos were analyzed to find parameters influencing bubble size at departure. A model was developed relating the dimensions of the bubble at departure to its upstream and downstream contact angles based on a rigid-body force balance between momentum and surface tension and assuming a skewed truncated spherical bubble shape. Both experimental and theoretical results predict that bubble width and height decrease with increasing flow speed and that the width increases with the equilibrium contact angle. The model also predicts that the width and height increase with the amount of contact angle hysteresis and that the height increases with equilibrium contact angle, though neither of these trends were clearly demonstrated by the data. Several directions for future research are proposed, including modifications to the model to account for deviations of the bubbles from the assumed geometry and research into the parameters controlling contact angle hysteresis of bubbles in a flow. Additionally, observations support that surfaces with periodically-varying contact angle may prevent film formation and increase the heat transfer coefficients in both film and pool boiling.
by Emily W. Tow.
S.B.
Livres sur le sujet "Wettability of vegetal surfaces"
International Symposium on Contact Angle, Wettability and Adhesion (3rd 2002 Providence, R.I.). Contact angle, wettability and adhesion. Sous la direction de Mittal K. L. 1945-. Utrecht : VSP, 2003.
Trouver le texte intégralR, Jones William, Herrera-Fierro Pilar et United States. National Aeronautics and Space Administration., dir. Spontaneous dewetting of a perfluoropolyether. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.
Trouver le texte intégral1940-, Jones William R., Herrera-Fierro Pilar et United States. National Aeronautics and Space Administration., dir. Spontaneous dewetting of a perfluoropolyether. [Washington, D.C.] : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralKlintström, Stefan Welin. Ellipsometry and wettability gradient surfaces. Linköping University, 1992.
Trouver le texte intégralGas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier, 2018. http://dx.doi.org/10.1016/c2017-0-02303-0.
Texte intégralChen, Yuan, Zheng Yongmei, Cheng Qunfeng et Hou Yongping. Bio-Inspired Wettability Surfaces : Developments in Micro- and Nanostructures. Jenny Stanford Publishing, 2015.
Trouver le texte intégralJiang, Guancheng. Gas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier Science & Technology Books, 2018.
Trouver le texte intégralBio-Inspired Wettability Surfaces : Developments in Micro- and Nanostructures. Taylor & Francis Group, 2015.
Trouver le texte intégralGas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier Science & Technology, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Wettability of vegetal surfaces"
Perz, Susan V., Christopher S. McMillan et Michael J. Owen. « Wettability of Fluorosilicone Surfaces ». Dans Fluorinated Surfaces, Coatings, and Films, 112–28. Washington, DC : American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0787.ch009.
Texte intégralKatz, Joseph L., Jin Sheng Sheu et Jer Ru Maa. « Nucleation on Smooth Surfaces ». Dans Modern Approaches to Wettability, 423–34. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_16.
Texte intégralBusscher, H. J. « Wettability of Surfaces in the Oral Cavity ». Dans Modern Approaches to Wettability, 249–61. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_9.
Texte intégralChristenson, H. K. « The Long-Range Attraction between Macroscopic Hydrophobic Surfaces ». Dans Modern Approaches to Wettability, 29–51. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_2.
Texte intégralSchrader, Malcolm E. « High- and Medium-Energy Surfaces : Ultrahigh Vacuum Approach ». Dans Modern Approaches to Wettability, 53–71. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_3.
Texte intégralJoud, Jean-Charles, et Marie-Geneviève Barthés-Labrousse. « Experimental Determination through Wettability Measurements ». Dans Physical Chemistry and Acid-Base Properties of Surfaces, 45–60. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145387.ch5.
Texte intégralOzbay, Ridvan, Ali Kibar et Chang-Hwan Choi. « Bubble Adhesion to Superhydrophilic Surfaces ». Dans Advances in Contact Angle, Wettability and Adhesion, 149–64. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117018.ch6.
Texte intégralPapadopoulou, Evie L. « Pulsed Laser Deposition of Surfaces with Tunable Wettability ». Dans Self-Cleaning Materials and Surfaces, 253–76. Chichester, UK : John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118652336.ch9.
Texte intégralJoud, Jean-Charles, et Marie-Geneviève Barthés-Labrousse. « Wettability of an Ideal Surface : Overview ». Dans Physical Chemistry and Acid-Base Properties of Surfaces, 1–8. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145387.ch1.
Texte intégralLee, Junghoon, Junghoon Lee et Chang-Hwan Choi. « Superhydrophobic Surfaces for Anti-Corrosion of Aluminum ». Dans Advances in Contact Angle, Wettability and Adhesion, 267–98. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119459996.ch12.
Texte intégralActes de conférences sur le sujet "Wettability of vegetal surfaces"
Orlova, E. G., D. S. Nikitin et S. A. Myazina. « Wettability of nanocomposite ceramic surfaces ». Dans INTERNATIONAL YOUTH SCIENTIFIC CONFERENCE “HEAT AND MASS TRANSFER IN THE THERMAL CONTROL SYSTEM OF TECHNICAL AND TECHNOLOGICAL ENERGY EQUIPMENT” (HMTTSC 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120680.
Texte intégralKita, Yutaku, Coinneach MacKenzie-Dover, Alexandros Askounis, Yasuyuki Takata et Khellil Sefiane. « DROP MOBILITY ON SUPERHYDROPHOBIC SURFACES WITH WETTABILITY CONTRASTS ». Dans International Heat Transfer Conference 16. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cod.023512.
Texte intégralParin, Riccardo, Stefano Bortolin, Alessandro Martucci et Davide Del Col. « EXPERIMENTS OF DROPWISE CONDENSATION ON WETTABILITY CONTROLLED SURFACES ». Dans International Heat Transfer Conference 16. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cod.024208.
Texte intégralSong, Hyunsoo, Yongku Lee, Songwan Jin, Ho-Young Kim et Jung Yul Yoo. « Sessile Drop Evaporation on Surfaces of Various Wettability ». Dans ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52096.
Texte intégralHan, Z. J., M. Shakerzadeh, B. K. Tay et C. M. Tan. « Protein immobilization on nanostructured surfaces with different wettability ». Dans 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424833.
Texte intégralBonner, Richard W. « Dropwise Condensation on Surfaces With Graded Hydrophobicity ». Dans ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88516.
Texte intégralZheng, Yongmei. « Bioinspired Wettability-Controlled Surfaces with Gradient Micro- and Nanostructures ». Dans The 3rd World Congress on New Technologies. Avestia Publishing, 2017. http://dx.doi.org/10.11159/icnfa17.114.
Texte intégralSun, Emily Wei-Hsin, et Ian C. Bourg. « Wettability of Mineral Surfaces by Water and Carbon Dioxide ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2492.
Texte intégralAnand, A. Vivek, S. Gollakota, V. Hariprasad, N. Shunmugavelu, Ashifkhan et V. Arumugam. « Wettability characteristics of microgroove patterned SS304 stainless steel surfaces ». Dans INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117963.
Texte intégralColetti, C., M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta et S. E. Saddow. « Biocompatibility and wettability of crystalline SiC and Si surfaces ». Dans 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353678.
Texte intégralRapports d'organisations sur le sujet "Wettability of vegetal surfaces"
Степанюк, Олександр Миколайович, et Руслана Михайлівна Балабай. Controlling by Defects of Switching of ZnO Nanowire Array Surfaces from Hydrophobic to Hydrophilic. Вид-во Прикарпатського нац. ун-т ім. Василя Стефаника, octobre 2023. http://dx.doi.org/10.31812/123456789/8487.
Texte intégralAbbott, Nicholas L., John P. Folkers et George M. Whitesides. Manipulation of the Wettability of Surfaces on the 0.1 to 1 Micrometer Scale Through Micromachining and Molecular Self-Assembly. Fort Belvoir, VA : Defense Technical Information Center, juillet 1992. http://dx.doi.org/10.21236/ada254887.
Texte intégralBarker, Amanda, Thomas Douglas, Erik Alberts, P. U. Ashvin Iresh Fernando, Garrett George, Jon Maakestad, Lee Moores et Stephanie Saari. Influence of chemical coatings on solar panel performance and snow accumulation. Engineer Research and Development Center (U.S.), janvier 2024. http://dx.doi.org/10.21079/11681/48059.
Texte intégral