Littérature scientifique sur le sujet « Wreath product symmetry »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Wreath product symmetry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Wreath product symmetry"

1

Dias, A. P. S., and I. Stewart. "Symmetry-Breaking Bifurcations of Wreath Product Systems." Journal of Nonlinear Science 9, no. 6 (1999): 671–95. http://dx.doi.org/10.1007/s003329900082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

WOOD, DAVID. "A CAUTIONARY TALE OF COUPLING CELLS WITH INTERNAL SYMMETRIES." International Journal of Bifurcation and Chaos 11, no. 01 (2001): 123–32. http://dx.doi.org/10.1142/s0218127401001980.

Texte intégral
Résumé :
We consider the implications of "all to all" coupling of n identical, Z2 symmetric cells. In particular we demonstrate that how this coupling is achieved with respect to these internal symmetries is important, even in this very simple scenario. The coupling we consider leads to a full symmetry of Sn, Z2×Sn or Z2≀Sn, where the latter is the "wreath product" symmetry. By considering the generic solutions of each case on their respective irreducible representations, we compare and contrast the three cases, and show how very different solutions could arise in essentially similar systems.
Styles APA, Harvard, Vancouver, ISO, etc.
3

McCarthy, Patrick J. "Geometry of generalised asymptotic symmetry groups or asymptotic symmetries, product bundles and wreath products." Physics Letters A 174, no. 1-2 (1993): 25–28. http://dx.doi.org/10.1016/0375-9601(93)90536-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kornyak, Vladimir. "Multipartite Quantum Systems and Representations of Wreath Products." EPJ Web of Conferences 226 (2020): 02013. http://dx.doi.org/10.1051/epjconf/202022602013.

Texte intégral
Résumé :
The multipartite quantum systems are of particular interest for the study of such phenomena as entanglement and non-local correlations. The symmetry group of the whole multipartite system is the wreath product of the group acting in the “local” Hilbert space and the group of permutations of the constituents. The dimension of the Hilbert space of a multipartite system depends exponentially on the number of constituents, which leads to computational difficulties. We describe an algorithm for decomposing representations of wreath products into irreducible components. The C implementation of the a
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kerber, Adalbert, and Thomas Scharf. "Tensors with icosahedral symmetry that are invariant under a certain wreath product." Journal of Mathematical Physics 28, no. 10 (1987): 2323–24. http://dx.doi.org/10.1063/1.527831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Scharf, T. "Tensors with icosahedral symmetry that are invariant under a certain wreath product. II." Journal of Physics A: Mathematical and General 22, no. 17 (1989): 3437–45. http://dx.doi.org/10.1088/0305-4470/22/17/010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Stewart, Ian, and Dinis Gökaydin. "Symmetries of Quotient Networks for Doubly Periodic Patterns on the Hexagonal Lattice." International Journal of Bifurcation and Chaos 30, no. 02 (2020): 2030004. http://dx.doi.org/10.1142/s0218127420300049.

Texte intégral
Résumé :
Pattern formation, dynamics and bifurcations for lattice models are strongly influenced by the symmetry of the lattice. However, network structure introduces additional constraints, which sometimes affect the resulting behavior. We compute the automorphism groups of all doubly periodic quotient networks of the hexagonal lattice with nearest-neighbor coupling, with emphasis on “exotic” cases where this quotient network has extra automorphisms not induced by automorphisms of the square lattice. These cases comprise three isolated networks and two infinite families with wreath product structure.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Stewart, Ian, and Dinis Gökaydin. "Symmetries of Quotient Networks for Doubly Periodic Patterns on the Square Lattice." International Journal of Bifurcation and Chaos 29, no. 10 (2019): 1930026. http://dx.doi.org/10.1142/s021812741930026x.

Texte intégral
Résumé :
Patterns of synchrony in networks of coupled dynamical systems can be represented as colorings of the nodes, in which nodes of the same color are synchronous. Balanced colorings, where nodes of the same color have color-isomorphic input sets, correspond to dynamically invariant subspaces, which can have a significant effect on the typical bifurcations of network dynamical systems. Orbit colorings for subgroups of the automorphism (symmetry) group of the network are always balanced, although the converse is false. We compute the automorphism groups of all doubly periodic quotient networks of th
Styles APA, Harvard, Vancouver, ISO, etc.
9

Balasubramanian, Krishnan. "Topological Indices, Graph Spectra, Entropies, Laplacians, and Matching Polynomials of n-Dimensional Hypercubes." Symmetry 15, no. 2 (2023): 557. http://dx.doi.org/10.3390/sym15020557.

Texte intégral
Résumé :
We obtain a large number of degree and distance-based topological indices, graph and Laplacian spectra and the corresponding polynomials, entropies and matching polynomials of n-dimensional hypercubes through the use of Hadamard symmetry and recursive dynamic computational techniques. Moreover, computations are used to provide independent numerical values for the topological indices of the 11- and 12-cubes. We invoke symmetry-based recursive Hadamard transforms to obtain the graph and Laplacian spectra of nD-hypercubes and the computed numerical results are constructed for up to 23-dimensional
Styles APA, Harvard, Vancouver, ISO, etc.
10

O. J., Ben, and Auta T. J. "Determination of the Conjugacy Classes and Character Table of the Full Non-Rigid Group of Hexachlorocyclopropane Chemical Compound Via Wreath Product of Pair of Permutation Groups." African Journal of Mathematics and Statistics Studies 7, no. 1 (2024): 97–103. http://dx.doi.org/10.52589/ajmss-t9jsevag.

Texte intégral
Résumé :
The use of full non-rigid (f.NRG) molecules group theory to study the internal dynamics of molecular structures of chemical compounds is trending in the research space. In this paper, we use computational method to compute the group elements and group table of the Hexachlorocyclopropane molecular (algebraic) structure and thereafter determine the order and conjugacy classes of the group and finally the corresponding symmetry for each permutation group. We considered the point group of the compound which turns out to be isomorphic to the Wreath Products C3wrC2, where Cn denotes a cyclic group o
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Wreath product symmetry"

1

Silva, Dias Ana Paula da. "Bifurcations with wreath product symmetry." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ryba, Christopher(Christopher Jonathan). "Stable characters for symmetric groups and wreath products." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126936.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, May, 2020<br>Cataloged from the official PDF of thesis.<br>Includes bibliographical references (pages 145-147).<br>Given a Hopf algebra R, the Grothendieck group of C = R-mod inherits the structure of a ring. We define a ring [mathematical equation]), which is "the [mathematical equation] limit" of the Grothendieck rings of modules for the wreath products [mathematical equation]; it is the Grothendieck group of a certain wreath product Deligne category. The construction yields a basis of [mathematical equation] c
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hyatt, Matthew. "Quasisymmetric Functions and Permutation Statistics for Coxeter Groups and Wreath Product Groups." Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/609.

Texte intégral
Résumé :
Eulerian quasisymmetric functions were introduced by Shareshian and Wachs in order to obtain a q-analog of Euler's exponential generating function formula for the Eulerian polynomials. They are defined via the symmetric group, and applying the stable and nonstable principal specializations yields formulas for joint distributions of permutation statistics. We consider the wreath product of the cyclic group with the symmetric group, also known as the group of colored permutations. We use this group to introduce colored Eulerian quasisymmetric functions, which are a generalization of Eulerian qua
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wagner, Jennifer D. "The combinatories of the permutation enumeration of wreath products between cyclic and symmetric groups /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9974108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Wreath product symmetry"

1

Mahmoud, Ibrahim Mahmoud Ibrahim. On the representations of wreath products of symmetric groups. University of Birmingham, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kerber, A. Representations of Permutation Groups I: Representations of Wreath Products and Applications to the Representation Theory of Symmetric and Alternating Groups. Springer London, Limited, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Wreath product symmetry"

1

Golubitsky, Martin, Ian Stewart, and Benoit Dionne. "Coupled Cells: Wreath Products and Direct Products." In Dynamics, Bifurcation and Symmetry. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0956-7_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Im, Mee Seong, and Angela Wu. "Generalized Iterated Wreath Products of Symmetric Groups and Generalized Rooted Trees Correspondence." In Association for Women in Mathematics Series. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98684-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Evens, Leonard. "Cohomology of wreath products." In The Cohomology of Groups. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198535805.003.0005.

Texte intégral
Résumé :
Abstract Wreath products (defined below) seem to be ubiquitous in group theory and its applications. They appear implicitly in the work of 19th century group theorists, but were first defined explicitly by Polya when studying combinatorial problems associated with classifying organic molecules (see Polya and Read 1987, p.99). They were studied systematically in a series of papers by Kaloujnine and Krasner (1948, 1950, 1951a, 1951b). The Sylow subgroups of symmetric groups (Hall 1959, Section 5.9) are formed from wreath products, as are the Sylow subgroups of Gl(n, F q) (and other linear groups
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Wreath product symmetry"

1

HIRAI, TAKESHI, and ETSUKO HIRAI. "CHARACTER FORMULA FOR WREATH PRODUCTS OF FINITE GROUPS WITH THE INFINITE SYMMETRIC GROUP." In Proceedings of the Third German-Japanese Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701503_0008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hirai, Takeshi, and Etsuko Hirai. "Character formula for wreath products of compact groups with the infinite symmetric group." In Quantum Probability. Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc73-0-15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!